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Global instability

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

H(q, p, I , ϕ) = h0(q, p, I ) + εh1(q, p, I , ϕ, t). (1)

For ε = 0,

İ =
∂h0

∂ϕ
= 0⇒ I = constant. (2)

There exists a global instability in the variable I if for a ε 6= 0, there exists
an orbit of the system (1) such that

4I := |I (T )− I (0)| = O(1). (3)

This instability is also called Arnold diffusion.
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Arnold example The origin

In 1964, V.I. Arnold proposed an example of a nearly-integrable
Hamiltonian with 2 + 1/2 degrees of freedom

H(q, p, ϕ, I , t) =
1

2

(
p2 + I 2

)
+ ε(cos q − 1) (1 + µ(sinϕ+ cos t)) ,

and asserted that given any δ,K > 0, for any 0 < µ� ε� 0, there exists
a trajectory of this Hamiltonian system such that

I (0) < δ and I (T ) > K for some time T > 0.

Notice that this a global instability result for the variable I , since

İ = −∂H
∂ϕ

= −εµ(cos q − 1) cosϕ

is zero for ε = 0, so I remains constant, whereas I can have a drift of
finite size for any ε > 0 small enough.
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Arnold example The origin

Arnold’s Hamiltonian can be written as a nearly-integrable autonomous
Hamiltonian with 3 degrees of freedom

H∗(q, p, ϕ, I , s,A) =
1

2

(
p2 + I 2

)
+ A + ε(cos q− 1) (1 + µ(sinϕ+ cos s)) ,

which for ε = 0 is an integrable Hamiltonian h(p, I ,A) = 1
2

(
p2 + I 2

)
+ A.

Since h satisfies the (Arnold) isoenergetic nondegeneracy∣∣∣∣ D2h Dh
Dh> 0

∣∣∣∣ = −1 6= 0

By the KAM theorem proven by Arnold in 1963, the 5D phase space of H
is filled, up to a set of relative measure O(

√
ε) , with 3D-invariant tori Tω

with Diophantine frequencies ω = (ω1, ω2, 1):

|k1ω1 + k2ω2 + k0| ≥ γ/|k |τ for any 0 6= (k1, k2, k0) ∈ Z,

where γ = O(
√
ε), and τ ≥ 2.
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The a priori unstable system The result

Consider a pendulum and two s plus a time periodic perturbation
depending on three harmonics in the variables ϕ = (ϕ1, ϕ2) and s:

Hε(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

Ω1I
2
1

2
+

Ω2I
2
2

2
+ εh(q, ϕ, s) (4)

h(q, ϕ, s) = f (q)g(ϕ, s),

f (q) = cos q, g(ϕ, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s.
(5)

Theorem

Consider the Hamiltonian (4)+(5). Assume a1a2a3 6= 0 and
|a1/a3|+ |a2/a3| < 0.625. Then, for every δ < 1 and R > 0 there exists
ε0 > 0 such that for every 0 < |ε| < ε0, given |I±| ≤ R, there exists an
orbit x̃(t) and T > 0, such that

|I (x̃(0))− I−| ≤ δ and |I (x̃(T ))− I+| ≤ δ.
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The a priori unstable system Goals

To review the construction of scattering maps initiated in
[Delshams-Llave-Seara00], designed to detect global instability.

To play with the parameter µ1 = a1/a3 and µ2 = a2/a3 to show their
influence in our mechanism.

To present some diffusion results for this concrete model with 3 + 1/2
degrees of freedom.
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The a priori unstable system The unperturbed system

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case ε = 0, the Hamiltonian H0 is integrable formed by
the standard pendulum plus two rotors

H0(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

Ω1I
2
1

2
+

Ω2I
2
2

2
.

I = (I1, I2) is constant: 4I := |I (T )− I (0)| ≡ 0.

For any 0 < ε� 1, there is a finite drift in the action of the rotor I :
4I = O(1), so we have global instability.

In short, this is is also frequently called Arnold diffusion.
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The a priori unstable system Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

To construct iterates under several Scattering maps and the Inner
map, giving rise to diffusing pseudo-orbits.

To use previous results about Shadowing [Fontich-Mart́ın00],
[Gidea-Llave-Seara14] for ensuring the existence of real orbits close to
the pseudo-orbits.
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An example of pseudo-orbit

As an illustration of our mechanics, we show an example for 2 + 1/2
degrees of freedom:

Hε(p, q, I , ϕ) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
+ ε cos q (µ cosϕ+ cos s) .

This case was studied in [Delshams - S. 2017].

Figure: In red: Inner map, blue: Scattering map, black: Highways, µ = 1.5.
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An example of pseudo-orbit Two dynamics in the NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics on a large invariant object Λ̃.

Λ̃ = {(0, 0, I , ϕ, s); I ∈ [−I ∗, I ∗]2 , (ϕ, s) ∈ T3}.

is a 5D Normally Hyperbolic Invariant Manifold (NHIM) with associated
6D stable W s

ε (Λ̃) and unstable W u
ε (Λ̃) invariant manifolds.

The inner dynamics is the dynamics restricted to Λ̃. (Inner map)

The outer dynamics is the dynamics along the invariant manifolds of
Λ̃. (Scattering map)

Remark: Due to the form of the perturbation, Λ̃ = Λ̃ε (not essential).
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Inner dynamics

As we have g(ϕ, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s, the inner dynamics
is described by the Hamiltonian system with the Hamiltonian

K (I , ϕ, s) =
Ω1I

2
1

2
+

Ω2I
2
2

2
+ ε (a1 cosϕ1 + a2 cosϕ2 + ((((hhhha3 cos s ) .

In this case the inner dynamics is integrable.
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Outer dynamics Scattering map

Let Λ̃ be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold Γ. A scattering map is a map S defined by
S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φεt (z̃)− φεt (x̃∓)| −→ 0 as t −→ ∓∞

that is, W u
ε (x̃−) intersects transversally W s

ε (x̃+) in z̃ .
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Outer dynamics Scattering map

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

Sε(I , ϕ, s) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2), s

)
,

where θ = ϕ− Is and L∗(I , θ) is the Reduced Poincaré function, or more simply
in the variables (I , θ):

Sε(I , θ) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2)

)
,

The variable s remains fixed under Sε: it plays the role of a parameter

Up to first order in ε, Sε is the −ε-time flow of the Hamiltonian L∗(I , θ)

The scattering map jumps O(ε) distances along the level curves of L∗(I , θ)

Now, we are going to construct the Reduced Poincaré function L∗.

Rodrigo G. Schaefer (UPC) Arnold diffusion Bienal RSME19 14 / 29



Outer dynamics The Melnikov Potential

To get a scattering map we search for homoclinic orbits to Λ̃ε

Proposition

Given (I , ϕ, s) ∈ [−I ∗, I ∗]2 × T3, assume that the real function

τ ∈ R 7−→ L(I , ϕ− I τ, s − τ) ∈ R

has a non degenerate critical point τ∗ = τ(I , ϕ, s), where

L(I , ϕ, s) =

∫ +∞

−∞
(cos q0(σ)− cos 0) g(ϕ+ Iσ, s + σ; 0)dσ.

Then, for 0 < |ε| small enough, there exists a transversal homoclinic point z̃ to

Λ̃ε, which is ε-close to the point z̃∗(I , ϕ, s) = (p0(τ∗), q0(τ∗), I , ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I , ϕ, s) = (p0(τ∗) + O(ε), q0(τ∗) + O(ε), I , ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).
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Outer dynamics The Melnikov Potential

In our model q0(t) = 4 arctan et , p0(t) = 2/cosh t is the separatrix for
positive p of the standard pendulum P(q, p) = p2/2 + cos q − 1.
For our g(ϕ, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s, the Melnikov potential
becomes

L(I , ϕ, s) = A1(I1) cosϕ1 + A2(I2) cosϕ2 + A3 cos s,

where Ai (Ii ) =
2πΩi Ii ai

sinh
(

Ωi Ii π
2

) , i = {1, 2} and A3 =
2π a3

sinh
(
π
2

) .
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Outer dynamics Reduced Poincaré function

Finally, the function L∗(I , θ) can be defined:

Definition

The Reduced Poincaré function is

L∗(I , θ) = L(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s)),

where θ = ϕ− I s.

Therefore the definition of L∗(I , θ = ϕ− Is) depends on the function
τ∗(I , ϕ, s).
So, we need to calculate τ∗ to obtain the L∗.
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Outer dynamics The function τ ∗(I , ϕ, s)

From the Proposition given above, we look for τ∗ such that
∂L
∂τ (I , ϕ− I τ∗, s − τ∗) = 0.

Different view-points for τ∗ = τ∗(I , ϕ, s)

Look for critical points of L on the straight line, called NHIM line
R(I , ϕ, s) = {(I , ϕ− I τ, s − τ), τ ∈ R}.
Look for intersections between
R(I , ϕ, s) = {(I , ϕ− I τ, s − τ), τ ∈ R} and a crest which is a surface
of equation

∂L
∂τ

(I , ϕ− I τ, s − τ)|τ=0 = 0.

Note that the crests are characterized by τ∗(I , ϕ, s) = 0.
The crests were introduced in [Delshams-Huguet11]. A similar
construction appears in [Davletshin-Treschev16].
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Outer dynamics Crests

Definition - Crests [Delshams-Huguet11]

For each I , we call crest C(I ) the set of surfaces in the variables (ϕ, s) of equation〈
(ω, 1) · ∇(ϕ,s)L∗(I , ϕ, s)

〉
= 0, (6)

where ωi = Ωi Ii .

which in our case can be rewritten as

µ1α(ω1) sinϕ1 + µ2α(ω2) sinϕ2 + sin s = 0,

where µi = ai/a3 and

α(ωi ) =
ω2
i sinh(π

2
)

sinh(πωi
2

)
.

L∗(I , θ) is nothing else but L evaluated on the crest C(I ).

θ = ϕ− Is is constant on the NHIM line R(I , ϕ, s)
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Outer dynamics Crests

Understanding the behavior of the crests

⇓
Understanding the behavior of the Reduced Poincaré function

⇓
Understanding the Scattering map
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Classification of the crests 0 < |µ1|+ |µ2| < 0.97

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by:

s = ξM(I , ϕ) = − arcsin(µ1α(ω1) sinϕ1 + µ2α(ω2) sinϕ2) mod 2π (7)

ξm(I , ϕ) = arcsin(µ1α(ω1) sinϕ1 + µ2α(ω2) sinϕ2) + π mod 2π

They are “horizontal” crests
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Classification of the crests 0 < |µ1|+ |µ2| < 0.97

For 0 < |µ1|+ |µ2| < 0.625:

For each I , the NHIM line R(I , ϕ, s) and the crest CM,m(I ) has only one
intersection point.

The scattering map SM associated to the intersections between CM(I ) and
R(I , ϕ, s) is well defined for any ϕ ∈ T. Analogously for Sm, changing M to m. In
the variables (I , θ = ϕ− Is), both scattering maps SM, Sm are globally well defined.

For 0.625 < |µ1|+ |µ2| < 0.97:

There are tangencies between CM,m(I , ϕ) and R(I , ϕ, s). For some value of
(I , ϕ, s), there are 3 points in R(I , ϕ, s) ∩ CM,m(I ).

This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)
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Classification of the crests 0.97 < |µ1|+ |µ2|

For |µ1| , |µ2| < 0.97:

The crests C(I ) are horizontal or unseparated.

For some value of I there are NHIM lines which are tangent to the crests. Again,
we have multiple scattering maps.

“Unseparated” crests
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Classification of the crests 0.97 < |µ1|+ |µ2|

For 0.97 < |µ1| or 0.97 < |µ2|

The crests C(I ) can be horizontal, vertical or unseparated

For some value of I there are NHIM lines which are tangent to the crests.

Example of “vertical” crests
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Arnold diffusion General diffusion

Theorem (Arnold diffusion for a two-parameter family)

Consider the Hamiltonian (4)+(5). Assume a1a2a3 6= 0 and
|a1/a3|+ |a2/a3| < 0.625. Then, for every δ < 1 and R > 0 there exists
ε0 > 0 such that for every 0 < |ε| < ε0, given |I±| ≤ R, there exists an
orbit x̃(t) and T > 0, such that

|I (x̃(0))− I−| ≤ δ and |I (x̃(T ))− I+| ≤ δ.

Remark

Actually, we can prove that given any two actions I± and any path γ(s)
joining them in the actions space, there exists an orbit x̃(t) such that
I (x̃(t)) is δ-close to γ(Ψ(t)) for some parameterization Ψ.
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Arnold diffusion Highways

We define a Highway as an invariant set H = {(I ,Θ(I ))} of the
Hamiltonian given by the reduced Poincaré function L∗(I , θ) which is
contained in the level energy L∗(I , θ) = A3. It is therefore a Lagrangian
manifold, there exists a function F (I ) such that Θ(I ) = ∇F (I ).
Therefore,

∂Θ1

∂I2
=
∂Θ2

∂I1
, i.e.,

∂2F

∂I2∂I1
=

∂2F

∂I1∂I2
.

Proposition

Consider the Hamiltonian (4)+(5). Assume a1a2a3 6= 0 and
|a1/a3|+ |a2/a3| < 0.625. For I1 and I2 close to infinity, the function F
takes the asymptotic form

F (I ) =
3π

2
(I1 + I2)−

∑
i=1,2

2ai sinh(π/2)

π4Ωi

(
π3ω3

i + 6π2ω2
i + 24πωi + 48

)
e−πωi/2

+O(ω2
1ω

2
2e
π(ω1+ω2)/2),
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Arnold diffusion Highways

Figure: Example of highways
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Arnold diffusion Highways

Proposition

Assume a1a2a3 6= 0 and |a1/a3|+ |a2/a3| < 0.625 in Hamiltonian (4)+(5).
Let (I h,Θ(I h)) a Highway. For I2, I1 � 1, we have

I h2 =
Ω1

Ω2
I h1 +

2

πΩ2
log

(
Ω2a2

Ω1a1

)
,

and for I2, I1 � −1,

I h2 =
Ω1

Ω2
I h1 +

2

πΩ2
log

(
Ω1a1

Ω2a2

)
,
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Arnold diffusion Highways

Proposition (Highways in a very special case)

Consider the Hamiltonian (4)+(5) and a1 = a2 = a satisfying
2 |a/a3| < 0.625 and Ω1 = Ω2 = Ω.
Let O =

{
(I 0, θ0), . . . , (IN , θN)

}
be an orbit in a highway, N ∈ N such

that I 0
1 = I 0

2 and θ0
1 = θ0

2. Then, I i1 = I i2 = Ī i and θi1 = θi2 = θ̄i for any
i ∈ {0, . . . ,N} and can be described by

θ̄h(Ī ) =

arccos
(
A3(1−f (Ī ))

A(Ī )

)
+ ω̄ arccos(f (Ī )), Ī ≤ 0;

arccos
(
A3(1−f (Ī ))

A(Ī )

)
− ω̄ arccos(f (Ī )), I > 0;

or

θ̄H(I ) =

− arccos
(
A3(1−f (Ī ))

A(Ī )

)
− ω̄ arccos(f (Ī )), Ī ≤ 0;

− arccos
(
A3(1−f (Ī ))

A(Ī )

)
+ ω̄ arccos(f (Ī )), Ī > 0;

,

where f (Ī ) = ω̄A3 −
√

A2
3 + (ω̄ − 1)Ī 2A2(Ī )/

[
A3(ω̄2 − 1)

]
and ω̄ = ĪΩ1.
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Thank you very much.

Muchas gracias.

Moltes gràcies.

Muito obrigado.
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