$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

Global instability in Hamiltonian systems

Rodrigo Gonçalves Schaefer
Director: Amadeu Delshams

Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya

València, 07 de Septiembre de 2017

The system

We consider the following a priori unstable Hamiltonian with $2+\frac{1}{2}$ degrees of freedom with 2π-periodic time dependence:

$$
\begin{equation*}
H_{\varepsilon}(p, q, I, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{I^{2}}{2}+\varepsilon h(p, q, I, \varphi, s) \tag{1}
\end{equation*}
$$

where $p, I \in \mathbb{R}, q, \varphi, s \in \mathbb{T}, \varepsilon$ small enough and

$$
\begin{equation*}
h(p, q, I \varphi, s)=\cos q\left(a_{0} \cos \left(k_{1} \varphi+l_{1} s\right)+a_{1} \cos \left(k_{2} \varphi+l_{2} s\right)\right) \tag{2}
\end{equation*}
$$

where $h(p, q, I, \varphi, s)$ is a perturbation which depends on two harmonics $\left(k_{1} l_{2} \neq k_{2} l_{1}\right.$ and $\left.k_{1} l_{2} \neq 0\right)$.

Goals

- To describe the maps of heteroclinic orbits (Scattering maps) and to design paths of instability.
- To estimate the time of diffusion (at least for $k_{1}=l_{2}=1$ and $\left.l_{1}=k_{2}=0\right)$.
- To play with the parameter $\mu=a_{0} / a_{1}$ to prove global instability for all value of $\mu \neq 0, \infty$.
- To describe bifurcations of the scattering maps.

In the unperturbed case, that is, $\varepsilon=0$, the Hamiltonian H_{0} is integrable (represents the standard pendulum plus a rotor) and takes the form

$$
H_{0}(p, q, I, \varphi, s)=\frac{p^{2}}{2}+\cos q-1+\frac{I^{2}}{2}
$$

I is constant.

Arnold diffusion

For $\varepsilon \neq 0$, we have the following result

Theorem

Consider a Hamiltonian $H_{\varepsilon}(p, q, I, \varphi, t)$ of the form (1), where $h(q, \varphi, s)$ is given by (2). Assume that $a_{0} a_{1} \neq 0$.
Then, for any $I^{*}>0$, there exists $0<\varepsilon^{*}=\varepsilon^{*}\left(I^{*}\right) \ll 1$ such that for any $\varepsilon, 0<\varepsilon<\varepsilon^{*}$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some $T>0$

$$
I(0) \leq-I^{*}<I^{*} \leq I(T)
$$

We consider $\triangle I=\mathcal{O}(1)$, at least. This is an example of Arnold diffusion.

Motivation: The model and the diffusion
$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

Pseudo-orbits : ways of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct a composition of some Scattering map and some Inner map. This composition is called a pseudo-orbit.
- To use previous results about Shadowing (Gidea - de la Llave - Seara 2014) for ensuring the existence of a real orbit close to our pseudo-orbit.

The dynamics associated to NHIM

We have two important dynamics associated to the system: the inner and the outer dynamics.

$$
\widetilde{\Lambda}=\left\{\tau_{I}^{0}\right\}_{I \in\left[-I^{*}, I^{*}\right]}=\left\{(0,0, I, \varphi, s) ; I \in\left[-I^{*}, I^{*}\right],(\varphi, s) \in \mathbb{T}^{2}\right\}
$$

is a Normally Hyperbolic Invariant Manifold (NHIM), this set has stable and unstable invariant manifolds.

- The inner is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The outer is the dynamics restricted to its invariant manifolds. (Scattering map)

Remark: In our case $\widetilde{\Lambda}=\widetilde{\Lambda}_{\varepsilon}$.

Outer dynamics: Scattering maps

Let $\widetilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ. A scattering map is a map S defined by $S\left(\tilde{x}_{-}\right)=\tilde{x}_{+}$if there exists $\tilde{z} \in \Gamma$ satisfying

$$
\left|\phi_{t}^{\varepsilon}(\tilde{z})-\phi_{t}^{\varepsilon}\left(\tilde{x}_{\mp}\right)\right| \longrightarrow 0 \text { as } t \longrightarrow \mp \infty
$$

that is, $W_{\varepsilon}^{u}\left(\tilde{x}_{-}\right)$intersects transversally $W_{\varepsilon}^{s}\left(\tilde{x}_{+}\right)$in $\tilde{z} . S$ is symplectic and exact (Delshams -de la Llave - Seara 2008), this implies that S takes the form:

$$
\mathcal{S}_{\varepsilon}(I, \theta)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right)\right),
$$

where $\theta=\varphi-I s$ and $\mathcal{L}^{*}(I, \theta)$ is the Reduced Poincaré function.
So, our focus will be the level curves of $\mathcal{L}^{*}(I, \theta)$.
Remark: The variable s remains fixed under the action of the Scattering map, or plays the role of a parameter.

Melnikov Potential

Note that for scattering maps we have to look for homoclinic points of $\tilde{\Lambda}$. We will use the Melnikov Potential:

Proposition

Given $(I, \varphi, s) \in\left[-I^{*}, I^{*}\right] \times \mathbb{T}^{2}$, assume that the real function

$$
\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi-I \tau, s-\tau) \in \mathbb{R}
$$

has a non degenerate critical point $\tau^{*}=\tau(I, \varphi, s)$, where $\mathcal{L}(I, \varphi, s)=$

$$
\int_{-\infty}^{+\infty} h\left(p_{0}(\sigma), q_{0}(\sigma), I, \varphi+I \sigma, s+\sigma ; 0\right)-h(0,0, I, \varphi+I \sigma, s+\sigma ; 0) d \sigma
$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε-close to the point
$\tilde{z}^{*}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right), q_{0}\left(\tau^{*}\right), I, \varphi, s\right) \in W^{0}(\widetilde{\Lambda}):$
$\tilde{z}=\tilde{z}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right)+O(\varepsilon), q_{0}\left(\tau^{*}\right)+O(\varepsilon), I, \varphi, s\right) \in W^{u}\left(\widetilde{\Lambda}_{\varepsilon}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{\varepsilon}\right)$.

Melnikov Potential and Reduced Poincaré function

- \mathcal{L} is the Melnikov potential.
- In our model,

$$
h(p, q, I, \varphi, s)=\cos q\left(a_{0} \cos \left(k_{1} \varphi+l_{1} s\right)+a_{1} \cos \left(k_{2} \varphi+l_{2} s\right)\right)
$$

- In our case

$$
\begin{aligned}
& \mathcal{L}(I, \varphi, s)=A_{0}(I) \cos \left(k_{1} \varphi+l_{1} s\right)+A_{1}(I) \cos \left(k_{2} \varphi+l_{2} s\right), \\
& \text { where } A_{0}(I)=\frac{2 \pi\left(k_{1} I+l_{1}\right) a_{0}}{\sinh \left(\frac{\left(k_{1} I+l_{1}\right) \pi}{2}\right)} \text { and } A_{1}=\frac{2\left(k_{2} I+l_{2}\right) \pi a_{1}}{\sinh \left(\frac{\left(k_{2} I+l_{2}\right) \pi}{2}\right)}
\end{aligned}
$$

Definition

Reduced Poincaré function is

$$
\mathcal{L}^{*}(I, \theta)=\mathcal{L}\left(I, \varphi-I \tau^{*}(I, \varphi, s), s-\tau^{*}(I, \varphi, s)\right)
$$

where $\theta=\varphi-I s$.
$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

Figure: The Melnikov Potential, $\mu=a_{0} / a_{1}=0.6, I=1, k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$.

Intersection point between invariant manifolds:

We look for τ^{*} such that $\frac{\partial \mathcal{L}}{\partial \tau}\left(I, \varphi-I \tau^{*}, s-\tau^{*}\right)=0$.
Different view-points of $\tau^{*}(I, \varphi, s)$

- Critical points of \mathcal{L} on the straight line $R(I, \varphi, s)=\{(\varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$.
- Intersection between $R(I, \varphi, s)=\{(\varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$ and the crest which it is the curve of equation

$$
\left.\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi-I \tau, s-\tau)\right|_{\tau=0}=0 .
$$

Crests

Definition - Crests (Delshams-Huguet 2011)

For each I, we call crests $\mathcal{C}(I)$ the pair (φ, s) such that $\tau^{*}=0$ satisfies

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \tau}\left(I, \varphi-I \tau^{*}, s-\tau^{*}\right)=0 \tag{3}
\end{equation*}
$$

For the computation of the reduced Poincaré function, we have to study this equation.

- $(0,0),(0, \pi),(\pi, 0)$ and (π, π) always belong to the crest. One maximum and one minimum point and two saddle points.
- $\mathcal{L}^{*}(I, \theta)$ is \mathcal{L} evaluated on the crest.
- $\theta=\varphi$-Is is constant on the straight line $R(I, \varphi, s)$

$$
\begin{array}{r}
k_{1}=k_{2}=1, l_{2}=-1 \text { and } l_{1}=0 \\
\text { Future work } \\
\text { Bibliography }
\end{array}
$$

Geometrical interpretation of the crest

Figure: Level curves of \mathcal{L} for $\mu=a_{0} / a_{1}=0.5, I=1.2, k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$.

Understanding the behavior of the crests
\Downarrow
Understanding the behavior of the Reduced Poincaré function
\Downarrow
Understanding the Scattering map

We only need study two cases:

- The first (easier) case proven in Regul. Chaotic Dyn.

$$
h(q, \varphi, s)=\cos q\left(a_{0} \cos \varphi+a_{1} \cos s\right)
$$

- The second (more complicated) case, in progress

$$
h(q, \varphi, s)=\cos q\left(a_{0} \cos \varphi+a_{1} \cos (\varphi-s)\right)
$$

Each case has its own characteristics and together are enough to understand the general case.
We present just some highlights about each case.

Special Pseudo orbits: Highways for the first case

Definition: Highways

Highways are the level curves of \mathcal{L}^{*} such that

$$
\mathcal{L}^{*}(I, \theta)=\frac{2 \pi a_{0}}{\sinh (\pi / 2)} .
$$

- Highways are "vertical"
- We always have a "pair" of highways. One goes up, the other goes down (this depends on signal of a_{0} / a_{1}.)
- It is easy to construct pseudo-orbits where highways are defined.

Special Pseudo orbits: Highways

$0<|\mu|<0.97$

- $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by:

$$
\begin{align*}
s=\xi_{M}(I, \varphi) & =-\arcsin (\alpha(I, \mu) \sin \varphi) & \bmod 2 \pi \tag{4}\\
\xi_{m}(I, \varphi) & =\arcsin (\alpha(I, \mu) \sin \varphi)+\pi & \bmod 2
\end{align*}
$$

They are the horizontal crests

$0<|\mu|<0.625$

- For each I, the line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ have only one intersection point.
- We have well defined S_{M} and S_{m}, where S_{M} is the scattering map associated to the intersections between $\mathcal{C}_{\mathrm{M}}(I)$ and $R(I, \varphi, s)$ and S_{m} is the scattering map associated to the intersection between $\mathcal{C}_{\mathrm{m}}(I)$ and $R(I, \varphi, s)$.

(a) Level curve of $\mathcal{L}_{M}^{*}(I, \theta)$.

(b) Level curves of $\mathcal{L}_{m}^{*}(\underline{I}, \theta)$

$0.625<|\mu|$

- There are tangencies between $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I, \varphi)$ and $R(I, \varphi, s)$. For some value of (I, φ, s), there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$.
- It implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

(c) The three types of level curves.

(d) Zoom where the scattering maps are different

Figure: Level curves of $\mathcal{L}_{M}^{*}(I, \theta), \mathcal{L}_{M}^{*(1)}(I, \theta)$ and $\mathcal{L}_{M}^{*(2)}(I, \theta)$

$|\mu|>0.97$

- For some values of $I,|\mu \alpha(I)|>1$, the two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}$ are parameterized by:

$$
\begin{array}{rlr}
\varphi=\eta_{M}(I, s) & =-\arcsin (\alpha(I, \mu) \sin s) & \bmod 2 \pi \tag{5}\\
\eta_{m}(I, s) & =\arcsin (\alpha(I, \mu) \sin s)+\pi & \bmod 2 \pi
\end{array}
$$

They are the vertical crests

As this happens for some values of I and when it happens, we can look this crests locally as the horizontal crests, we restrict the domain of the Scattering map.

Figure: The level curves of $\mathcal{L}_{\mathrm{M}}^{*}(I, \theta), \mu=1.5$.
In green, the region where the scattering map S_{M} is not defined.

Motivation: The model and the diffusion
$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways

Time of diffusion

An estimate of the total time of diffusion between I_{0} and I_{f}, for simplicity only along the highways is

$$
T_{d} \sim N_{\mathrm{s}} T_{\mathrm{h}} \sim \frac{T_{\mathrm{s}}}{\varepsilon} \log \left(\frac{C_{\mathrm{h}}}{\varepsilon}\right)
$$

where

- $T_{\mathrm{h}} \approx \log \left(\frac{C_{\mathrm{h}}}{\varepsilon}\right)$ is the time along the homoclinic invariant manifold of $\widetilde{\Lambda}$,
where $C_{\mathrm{h}}=8\left|a_{0}\right|\left(1+\frac{1.465}{\sqrt{1-\mu^{2} \alpha^{2}\left(I_{\mathrm{M}}\right)}}\right)$
- $N_{\mathrm{s}}=T_{\mathrm{s}} / \varepsilon$ is the number of iterates of the scattering map along the highway and
- $T_{s}=\int_{I_{0}}^{I_{f}} \frac{-\sinh (I \pi / 2)}{2 \pi I a_{0} \sin \psi_{\mathrm{h}}(I)} d I$, where $\psi_{\mathrm{h}}=\theta-I \tau^{*}(I, \theta)$ is a parametrization of the highway.

This estimate agrees with the optimal estimate of (Berti-Biasco-Bolle 2003) and (Treschev 2004), a time of the order $\mathcal{O}\left(\varepsilon^{-1} \log \varepsilon^{-1}\right)$,
$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

Main differences between the first and second cases

In the second case:

- There are no Highways.
- For any value of $\mu=a_{0} / a_{1}$ is possible to find I_{h} and I_{v} such that for I_{h} the crests are horizontal and for I_{v} the crests are vertical.
- For any value of μ there exists I such that the crests and $R(I, \varphi, s)$ are tangent.

Same crest, different scattering map

How to take $\tau^{*}(I, \theta)$ is very important and useful. Green zones: I increases under scattering map. Red zones: I decreases under scattering map.

Figure: "Lower" crest.
Figure: "Upper" crest

Motivation: The model and the diffusion

$$
\begin{array}{r}
k_{1}=l_{2}=1 \text { and } k_{2}=l_{1}=0 \\
k_{1}=k_{2}=1, l_{2}=-1 \text { and } l_{1}=0 \\
\text { Future work } \\
\text { Bibliography }
\end{array}
$$

Figure: Lower $\left|\tau^{*}\right|$

$$
\begin{array}{r}
\text { Motivation: The model and the diffusion } \\
k_{1}=l_{2}=1 \text { and } k_{2}=l_{1}=0 \\
k_{1}=k_{2}=1, l_{2}=-1 \text { and } l_{1}=0 \\
\text { Future work } \\
\text { Bibliography }
\end{array}
$$

Combination of Scattering maps: A non-smooth vector field

In this picture we show a combination of 6 scattering maps.

$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

A Hamiltonian with $3+1 / 2$ dof

$H\left(I_{1}, I_{2}, \varphi_{1}, \varphi_{2}, p, q, t, \varepsilon\right)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+h\left(I_{1}, I_{2}\right)+\varepsilon \cos q g\left(\varphi_{1}, \varphi_{2}, t\right)$,
where

$$
h\left(I_{1}, I_{2}\right)=\Omega_{1} \frac{I_{1}^{2}}{2}+\Omega_{2} \frac{I_{2}^{2}}{2}
$$

and

$$
g\left(\varphi_{1}, \varphi_{2}, t\right)=a_{1} \cos \varphi_{1}+a_{2} \cos \varphi_{2}+a_{3} \cos \left(\varphi_{1}+\varphi_{2}-t\right)
$$

A Hamiltonian with $3+1 / 2$ dof

In this case, the Melnikov potential is

$$
\mathcal{L}(I, \varphi-\omega \tau)=\sum_{i=1}^{3} A_{i} \cos \left(\varphi_{i}-\omega_{i} \tau\right)
$$

where $\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right), \omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right), \varphi_{3}=\varphi_{1}+\varphi_{2}-s$,

$$
A_{i}=\frac{2 \pi \omega_{i}}{\sinh \left(\frac{\pi \omega_{i}}{2}\right)} a_{i}
$$

and

$$
\omega_{1}=\Omega_{1} I_{1} \quad \omega_{2}=\Omega_{2} I_{2} \quad \omega_{3}=\omega_{1}+\omega_{2}-1
$$

Example of crests

Figure: Horizontal crests:
$\mu_{1}=\mu_{2}=0.48$
,$\omega_{1}=\omega_{2}=1.219$.

Figure: Crests with holes : $\mu_{1}=0.7, \mu_{2}=0.6$ ${ }_{,} \omega_{1}=\omega_{2}=1.219$.
$k_{1}=l_{2}=1$ and $k_{2}=l_{1}=0$
$k_{1}=k_{2}=1, l_{2}=-1$ and $l_{1}=0$
Future work
Bibliography

Behavior of the crests

Figure: $\omega_{1}=\omega_{2}=1.219$

Figure: $\mu_{1}=\mu_{2}=1.2$

Pink: Surface with holes, white: horizontal surfaces $s\left(\varphi_{1}, \varphi_{2}\right)$, purple: vertical surfaces $\varphi_{1}\left(\varphi_{2}, s\right)$, green: vertical surfaces $\varphi_{2}\left(\varphi_{1}, s\right)$.

Muchas gracias!

A short bibliography

- Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with optimal diffusion time.J.Math.Pures Appl.. 2003.
- Delshams, de la LLave, Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of \mathbb{T}^{2}. Comm. Math. Phys.. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model.Mem. Amer. Math. Soc.. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion.Advances in Mathematics. 2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlienarity. 2009.
- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equations. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations.Regular and Chaotics Dynamics. 2017.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. arXiv. 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity . 2004.

