Global instability in Hamiltonian systems

Rodrigo Gonçalves Schaefer Director: Amadeu Delshams

Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya

València, 07 de Septiembre de 2017

(日) (同) (三) (三)

The system

We consider the following a priori unstable Hamiltonian with $2 + \frac{1}{2}$ degrees of freedom with 2π -periodic time dependence:

$$H_{\varepsilon}(p,q,I,\varphi,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + \frac{I^2}{2} + \varepsilon h(p,q,I,\varphi,s), \quad (1)$$

where $p\text{, }I\in\mathbb{R}\text{, }q,\,\varphi,\,s\in\mathbb{T}\text{, }\varepsilon$ small enough and

$$h(p,q,I\varphi,s) = \cos q \left(a_0 \cos(k_1\varphi + l_1s) + a_1 \cos(k_2\varphi + l_2s)\right),$$
(2)

where $h(p,q,I,\varphi,s)$ is a perturbation which depends on two harmonics $(k_1l_2 \neq k_2l_1 \text{ and } k_1l_2 \neq 0)$.

Goals

- To describe the maps of heteroclinic orbits (Scattering maps) and to design paths of instability.
- To estimate the time of diffusion (at least for $k_1 = l_2 = 1$ and $l_1 = k_2 = 0$).
- To play with the parameter μ = a₀/a₁ to prove global instability for all value of μ ≠ 0,∞.
- To describe bifurcations of the scattering maps.

In the unperturbed case, that is, $\varepsilon = 0$, the Hamiltonian H_0 is integrable (represents the standard pendulum plus a rotor) and takes the form

$$H_0(p,q,I,\varphi,s) = \frac{p^2}{2} + \cos q - 1 + \frac{I^2}{2}.$$

I is constant.

イロト 不得下 イヨト イヨト 二日

Arnold diffusion

For $\varepsilon \neq 0,$ we have the following result

Theorem

Consider a Hamiltonian $H_{\varepsilon}(p,q,I,\varphi,t)$ of the form (1), where $h(q,\varphi,s)$ is given by (2). Assume that $a_0 a_1 \neq 0$. Then, for any $I^* > 0$, there exists $0 < \varepsilon^* = \varepsilon^*(I^*) << 1$ such that for any ε , $0 < \varepsilon < \varepsilon^*$, there exists a trajectory $(p(t),q(t),I(t),\varphi(t))$ such that for some T > 0

$$I(0) \le -I^* < I^* \le I(T).$$

We consider $\triangle I = \mathcal{O}(1)$, at least. This is an example of Arnold diffusion.

Pseudo-orbits : ways of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct a composition of some Scattering map and some Inner map. This composition is called a *pseudo-orbit*.
- To use previous results about Shadowing (Gidea de la Llave Seara 2014) for ensuring the existence of a real orbit close to our pseudo-orbit.

The dynamics associated to NHIM

We have two important dynamics associated to the system: the inner and the outer dynamics.

$$\widetilde{\Lambda} = \{\tau_I^0\}_{I \in [-I^*, I^*]} = \{(0, 0, I, \varphi, s); I \in [-I^*, I^*], (\varphi, s) \in \mathbb{T}^2\}.$$

is a *Normally Hyperbolic Invariant Manifold* (NHIM), this set has stable and unstable invariant manifolds.

- The *inner* is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The *outer* is the dynamics restricted to its invariant manifolds. (Scattering map)

Remark: In our case $\widetilde{\Lambda}=\widetilde{\Lambda}_{\varepsilon}$.

Outer dynamics: Scattering maps

Let $\tilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ . A scattering map is a map S defined by $S(\tilde{x}_{-}) = \tilde{x}_{+}$ if there exists $\tilde{z} \in \Gamma$ satisfying

$$|\phi^{\varepsilon}_t(\tilde{z}) - \phi^{\varepsilon}_t(\tilde{x}_{\mp})| \longrightarrow 0 \text{ as } t \longrightarrow \mp \infty$$

that is, $W^u_{\varepsilon}(\tilde{x}_-)$ intersects transversally $W^s_{\varepsilon}(\tilde{x}_+)$ in \tilde{z} . S is symplectic and exact (Delshams -de la Llave - Seara 2008), this implies that S takes the form:

$$\mathcal{S}_{\varepsilon}(I,\theta) = \left(I + \varepsilon \, \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + \mathcal{O}(\varepsilon^2), \theta - \varepsilon \, \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + \mathcal{O}(\varepsilon^2)\right),$$

where $\theta = \varphi - Is$ and $\mathcal{L}^*(I, \theta)$ is the Reduced Poincaré function.

So, our focus will be the level curves of $\mathcal{L}^*(I, \theta)$.

Remark: The variable *s* remains fixed under the action of the Scattering map, or plays the role of a parameter.

Melnikov Potential

Note that for scattering maps we have to look for homoclinic points of $\tilde{\Lambda}$. We will use the Melnikov Potential:

Proposition

Given $(I, \varphi, s) \in [-I^*, I^*] \times \mathbb{T}^2$, assume that the real function

$$\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi - I \tau, s - \tau) \in \mathbb{R}$$

has a non degenerate critical point $\tau^*\,=\,\tau(I,\varphi,s),$ where $\mathcal{L}(I,\varphi,s)=$

$$\int_{-\infty}^{+\infty} h(p_0(\sigma), q_0(\sigma), I, \varphi + I\sigma, s + \sigma; 0) - h(0, 0, I, \varphi + I\sigma, s + \sigma; 0) d\sigma.$$

Then, for $0 < |\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε -close to the point $\tilde{z}^*(I, \varphi, s) = (p_0(\tau^*), q_0(\tau^*), I, \varphi, s) \in W^0(\widetilde{\Lambda})$: $\tilde{z} = \tilde{z}(I, \varphi, s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), I, \varphi, s) \in W^u(\widetilde{\Lambda}_{\varepsilon}) \pitchfork W^s(\widetilde{\Lambda}_{\varepsilon}).$

Melnikov Potential and Reduced Poincaré function

- \mathcal{L} is the Melnikov potential.
- In our model,

$$h(p,q,I,\varphi,s) = \cos q \left(a_0 \cos(k_1 \varphi + l_1 s) + a_1 \cos(k_2 \varphi + l_2 s) \right).$$

In our case

$$\mathcal{L}(I,\varphi,s) = A_0(I)\cos(k_1\varphi + l_1s) + A_1(I)\cos(k_2\varphi + l_2s),$$

where
$$A_0(I) = \frac{2\pi \left(k_1 I + l_1\right) a_0}{\sinh\left(\frac{(k_1 I + l_1)\pi}{2}\right)}$$
 and $A_1 = \frac{2\left(k_2 I + l_2\right)\pi a_1}{\sinh\left(\frac{(k_2 I + l_2)\pi}{2}\right)}$.

Definition

Reduced Poincaré function is

$$\mathcal{L}^*(I,\theta) = \mathcal{L}(I,\varphi - I\tau^*(I,\varphi,s), s - \tau^*(I,\varphi,s)),$$

where $\theta = \varphi - I s$.

Motivation: The model and the diffusion $k_1 = l_2 = 1$ and $k_2 = l_1 = 0$

Future work Bibliography

Figure: The Melnikov Potential, $\mu = a_0/a_1 = 0.6$, I = 1, $k_1 = l_2 = 1$ and $k_2 = l_1 = 0$.

Intersection point between invariant manifolds:

We look for τ^* such that $\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - I \tau^*, s - \tau^*) = 0.$

Different view-points of $\tau^*(I, \varphi, s)$

- Critical points of \mathcal{L} on the straight line $R(I, \varphi, s) = \{(\varphi I \tau, s \tau), \tau \in \mathbb{R}\}.$
- Intersection between $R(I, \varphi, s) = \{(\varphi I \tau, s \tau), \tau \in \mathbb{R}\}$ and the crest which it is the curve of equation

$$\frac{\partial \mathcal{L}}{\partial \tau} (I, \varphi - I\tau, s - \tau)|_{\tau=0} = 0.$$

Crests

Definition - Crests (Delshams-Huguet 2011)

For each I, we call crests $\mathcal{C}(I)$ the pair (φ,s) such that $\tau^*=0$ satisfies

$$\frac{\partial \mathcal{L}}{\partial \tau} (I, \varphi - I \tau^*, s - \tau^*) = 0.$$
(3)

For the computation of the reduced Poincaré function, we have to study this equation.

- $(0,0), (0,\pi), (\pi,0)$ and (π,π) always belong to the crest. One maximum and one minimum point and two saddle points.
- $\mathcal{L}^*(I, \theta)$ is \mathcal{L} evaluated on the crest.
- $\theta = \varphi Is$ is constant on the straight line $R(I, \varphi, s)$

Geometrical interpretation of the crest

Figure: Level curves of \mathcal{L} for $\mu = a_0/a_1 = 0.5$, I = 1.2, $k_1 = l_2 = 1$ and $k_2 = l_1 = 0$.

Understanding the behavior of the crests ψ Understanding the behavior of the Reduced Poincaré function ψ Understanding the Scattering map

We only need study two cases:

• The first (easier) case proven in Regul. Chaotic Dyn.

$$h(q,\varphi,s) = \cos q \left(a_0 \cos \varphi + a_1 \cos s\right)$$

• The second (more complicated) case, in progress

$$h(q,\varphi,s) = \cos q \left(a_0 \cos \varphi + a_1 \cos(\varphi - s)\right)$$

Each case has its own characteristics and together are enough to understand the general case.

We present just some highlights about each case.

Special Pseudo orbits: Highways for the first case

Definition: Highways

Highways are the level curves of \mathcal{L}^* such that

$$\mathcal{L}^*(I,\theta) = \frac{2\pi a_0}{\sinh(\pi/2)}.$$

- Highways are "vertical"
- We always have a "pair" of highways. One goes up, the other goes down (this depends on signal of a₀/a₁.)
- It is easy to construct pseudo-orbits where highways are defined.

Special Pseudo orbits: Highways

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$0 < |\mu| < 0.97$

• $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{\mathrm{M,m}}(I)$ parameterized by:

$$s = \xi_M(I,\varphi) = -\arcsin(\alpha(I,\mu)\sin\varphi) \mod 2\pi$$
(4)

$$\xi_m(I,\varphi) = \arcsin(\alpha(I,\mu)\sin\varphi) + \pi \mod 2\pi$$

They are the horizontal crests

$0 < |\mu| < 0.625$

- For each I, the line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ have only one intersection point.
- We have well defined S_M and S_m , where S_M is the scattering map associated to the intersections between $\mathcal{C}_M(I)$ and $R(I,\varphi,s)$ and S_m is the scattering map associated to the intersection between $\mathcal{C}_m(I)$ and $R(I,\varphi,s)$.

$0.625 < |\mu|$

- There are tangencies between $C_{M,m}(I, \varphi)$ and $R(I, \varphi, s)$. For some value of (I, φ, s) , there are 3 points in $R(I, \varphi, s) \cap C_{M,m}(I)$.
- It implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

(c) The three types of level curves.

(d) Zoom where the scattering maps are different

Figure: Level curves of $\mathcal{L}^*_M(I,\theta)$, $\mathcal{L}^{*(1)}_M(I,\theta)$ and $\mathcal{L}^{*(2)}_M(I,\theta)$

$|\mu| > 0.97$

• For some values of $I, \ |\mu\alpha(I)|>1,$ the two crests $\mathcal{C}_{\rm M,m}$ are parameterized by:

$$\varphi = \eta_M(I, s) = -\arcsin(\alpha(I, \mu)\sin s) \mod 2\pi$$

$$\eta_m(I, s) = \arcsin(\alpha(I, \mu)\sin s) + \pi \mod 2\pi$$
(5)

They are the vertical crests

As this happens for some values of I and when it happens, we can look this crests locally as the horizontal crests, we restrict the domain of the Scattering map.

Figure: The level curves of $\mathcal{L}^*_{\mathsf{M}}(I,\theta)$, $\mu = 1.5$.

In green, the region where the scattering map $S_{\rm M}$ is not defined.

An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways

Time of diffusion

An estimate of the total time of diffusion between I_0 and $I_{\rm f}$, for simplicity only along the highways is

$$T_d \sim N_{\rm s} T_{\rm h} \sim \frac{T_{\rm s}}{\varepsilon} \log\left(\frac{C_{\rm h}}{\varepsilon}\right),$$

where

- $T_{\rm h} \approx \log\left(\frac{C_{\rm h}}{\varepsilon}\right)$ is the time along the homoclinic invariant manifold of $\tilde{\Lambda}$, where $C_{\rm h} = 8 |a_0| \left(1 + \frac{1.465}{\sqrt{1 - \mu^2 \alpha^2(I_{\rm M})}}\right)$
- $N_{\rm s}=T_{\rm s}/\varepsilon$ is the number of iterates of the scattering map along the highway and

•
$$T_s = \int_{I_0}^{I_f} \frac{-\sinh(I\pi/2)}{2\pi I a_0 \sin \psi_h(I)} dI$$
, where $\psi_h = \theta - I\tau^*(I, \theta)$ is a parametrization of the highway.

This estimate agrees with the optimal estimate of (Berti-Biasco-Bolle 2003) and (Treschev 2004), a time of the order $\mathcal{O}(\varepsilon^{-1}\log\varepsilon_{+}^{-1})$,

Main differences between the first and second cases

In the second case:

- There are no *Highways*.
- For any value of $\mu = a_0/a_1$ is possible to find I_h and I_v such that for I_h the crests are horizontal and for I_v the crests are vertical.
- For any value of μ there exists I such that the crests and $R(I,\varphi,s)$ are tangent.

Same crest, different scattering map

How to take $\tau^*(I, \theta)$ is very important and useful. Green zones: I increases under scattering map. Red zones: I decreases under scattering map.

Figure: Lower $|\tau^*|$

Combination of Scattering maps: A non-smooth vector field

In this picture we show a combination of 6 scattering maps.

A Hamiltonian with 3 + 1/2 dof

$$H(I_1, I_2, \varphi_1, \varphi_2, p, q, t, \varepsilon) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + h(I_1, I_2) + \varepsilon \cos q \, g(\varphi_1, \varphi_2, t),$$

where

$$h(I_1, I_2) = \Omega_1 \frac{I_1^2}{2} + \Omega_2 \frac{I_2^2}{2}$$

and

$$g(\varphi_1, \varphi_2, t) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos(\varphi_1 + \varphi_2 - t).$$

A Hamiltonian with 3 + 1/2 dof

In this case, the Melnikov potential is

$$\mathcal{L}(I,\varphi-\omega\tau) = \sum_{i=1}^{3} A_i \cos(\varphi_i - \omega_i \tau),$$

where $\varphi = (\varphi_1, \varphi_2, \varphi_3)$, $\omega = (\omega_1, \omega_2, \omega_3), \varphi_3 = \varphi_1 + \varphi_2 - s$,

$$A_i = \frac{2\pi\omega_i}{\sinh(\frac{\pi\omega_i}{2})}a_i,$$

and

$$\omega_1 = \Omega_1 I_1 \quad \omega_2 = \Omega_2 I_2 \quad \omega_3 = \omega_1 + \omega_2 - 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example of crests

Figure: Horizontal crests: $\mu_1 = \mu_2 = 0.48$ $\mu_1 = \mu_2 = 1.219$. Figure: Crests with holes : $\mu_1 = 0.7, \mu_2 = 0.6$, $\omega_1 = \omega_2 = 1.219$.

 $\begin{array}{l} \text{Motivation: The model and the diffusion} \\ k_1 = l_2 = 1 \text{ and } k_2 = l_1 = 0 \\ k_1 = k_2 = 1, \, l_2 = -1 \text{ and } l_1 = 0 \\ \hline \textbf{Future work} \\ \textbf{Bibliography} \end{array}$

Behavior of the crests

Figure: $\omega_1 = \omega_2 = 1.219$

Figure: $\mu_1 = \mu_2 = 1.2$

Pink: Surface with holes, white: horizontal surfaces $s(\varphi_1, \varphi_2)$, purple: vertical surfaces $\varphi_1(\varphi_2, s)$, green: vertical surfaces $\varphi_2(\varphi_1, s)$.

Muchas gracias!

A short bibliography

- Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with optimal diffusion time.*J.Math.Pures Appl.*.2003.
- Delshams, de la LLave, Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of T². Comm. Math. Phys. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model.*Mem. Amer. Math. Soc.*. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion. *Advances in Mathematics*.2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. *Nonlienarity*. 2009.

```
\begin{array}{l} \mbox{Motivation: The model and the diffusion} \\ k_1 = l_2 = 1 \mbox{ and } k_2 = l_1 = 0 \\ k_1 = k_2 = 1, \ l_2 = -1 \mbox{ and } l_1 = 0 \\ \mbox{Future work} \\ \mbox{Bibliography} \end{array}
```

- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. *J. Differential Equations*. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations. *Regular and Chaotics Dynamics*. 2017.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. *arXiv*. 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. *Nonlinearity* . 2004.