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Motivation: The model and the diffusion

The system

We consider the following a priori unstable Hamiltonian with 2 + %
degrees of freedom with 27-periodic time dependence:

2 IQ
He(p, g, 1,p,8) =% <pz + cosq — 1>+2+6h(p,q717s0, s), (1)
where p, I € R, q, ¢, s € T, € small enough and

h(p,q, Iy, s) = cos q (ap cos(k1p + 118) + a1 cos(kap + 125))
(2)
where h(p,q,I,¢,s) is a perturbation which depends on two
harmonics (k1le # koly and kily # 0).
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Motivation: The model and the diffusion

To describe the maps of heteroclinic orbits (Scattering maps)
and to design paths of instability.

To estimate the time of diffusion (at least for k; =l = 1 and
li=ky=0).

To play with the parameter ;1 = agp/a; to prove global
instability for all value of u # 0, co.

To describe bifurcations of the scattering maps.



Motivation: The model and the diffusion

In the unperturbed case, that is, € = 0, the Hamiltonian Hj is
integrable (represents the standard pendulum plus a rotor) and
takes the form

p’ 2
HO(Paana%S) = 5"‘(305(]—14‘?
I is constant. J




Motivation: The model and the diffusion

Arnold diffusion

For € # 0, we have the following result

Theorem

Consider a Hamiltonian H.(p,q, I, p,t) of the form (1), where
h(q, e, s) is given by (2). Assume that aga; # 0.

Then, for any I* > 0, there exists 0 < ¢* = ¢*([*) << 1 such that
for any €, 0 < € < €%, there exists a trajectory
(p(t),q(t),I1(t),p(t)) such that for some T' > 0

1(0) < —I* < I* < I(T).

We consider AI = O(1), at least. This is an example of Arnold
diffusion.



Motivation: The model and the diffusion

Pseudo-orbits : ways of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

@ To construct a composition of some Scattering map and some Inner map.
This composition is called a pseudo-orbit.

@ To use previous results about Shadowing (Gidea - de la Llave - Seara
2014) for ensuring the existence of a real orbit close to our pseudo-orbit.
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Motivation: The model and the diffusion

The dynamics associated to NHIM

We have two important dynamics associated to the system: the inner and the
outer dynamics.

K = {T?}IG[fl*,I*] = {(0707[7()075);[ S [_[*7]*]7(9078) € TZ}

is a Normally Hyperbolic Invariant Manifold (NHIM), this set has stable and
unstable invariant manifolds.
@ The inner is the dynamics restricted to A. (Inner map)

@ The outer is the dynamics restricted to its invariant manifolds.
(Scattering map)

Remark: In our case A = A. .



Motivation: The model and the diffusion

Outer dynamics: Scattering maps

Let A be a NHIM with invariant manifolds intersecting transversally along a
homoclinic manifold I'. A scattering map is a map S defined by S(Z_) = Z if
there exists Z € I satisfying

|95 (2) — &% ()] —> 0 ast —> Foo

that is, W2 (Z_) intersects transversally W7 (Z4) in Z. S is symplectic and
exact (Delshams -de la Llave - Seara 2008), this implies that S takes the form:

&mw:(“fgiw@+0@%e oL

- e w0 +0E),
where 8 = ¢ — I's and L*(1,0) is the Reduced Poincaré function.

So, our focus will be the level curves of L*(I,0). )

Remark: The variable s remains fixed under the action of the Scattering map,

or plays the role of a parameter.



Motivation: The model and the diffusion

Melnikov Potential

Note that for scattering maps we have to look for homoclinic points of A. We
will use the Melnikov Potential:

Proposition

Given (I,p,s) € [-I*,I*] x T?, assume that the real function
TER+— LUT,p—IT,s—7) ER
has a non degenerate critical point 7 = 7(I, ¢, s), where L(I,p,s) =
+o0
/ h(po(o),qo0(o), I, + Io,s+ 7;0) — h(0,0,1,p + Io, s + o;0)do.

Then, for 0 < |e| small enough, there exists a transversal homoclinic point Z to

Ac, which is e-close to the point _
2*(179075) = (pO(T*)qu(T*)7]7907S) € WO(A)

F=3(I,0,5) = (po(7*) + O(€), o (r") + O(e), I, 0,5) € W"(A) h W*(A.).




Motivation: The model and the diffusion

Melnikov Potential and Reduced Poincaré function

@ L is the Melnikov potential.
@ In our model,

h(p,q,1,¢,s) = cosq(aocos(kip + l18) + a1 cos(kap + 129)).
@ In our case

L(I,¢,8) = Ao(I)cos(kip + l1s) + A1 (I) cos(kap + l2s),

_ 27r(k1]+l1)a0 d A — 2(1{:2]—}—12)71’(11

Where A()(I) m 1 Slnh(W) .

Definition

Reduced Poincaré function is

‘C'*(I70) :E(Iv¢_IT*(Iv@7S)7S_T*(Ivtp,s))v
where 0 = ¢ — I s.
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Motivation: The model and the diffusion

O N WARUON®

Figure: The Melnikov Potential, 4 = ag/a1 =0.6, I =1, k1 =1y =1
and ky =1; = 0.
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Motivation: The model and the diffusion

Intersection point between invariant manifolds:

We look for 7% such that g—f(l, o—I1*s—71%)=0.

Different view-points of 7%(1, ¢, )

@ Critical points of £ on the straight line
R(I,(p,s) - {((p—IT,S _T)v T E R}
@ Intersection between R(I,p,s) ={(p —I1,s —7), T € R}
and the crest which it is the curve of equation
oL

E(I,gp —I1,s —T)|r=0 = 0.
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Motivation: The model and the diffusion

Crests

Definition - Crests (Delshams-Huguet 2011)

For each I, we call crests C(I) the pair (¢, s) such that 7% = 0 satisfies

oL

E(I,gp—[r*,s—r*)zo. (3)

For the computation of the reduced Poincaré function, we have to study this
equation.

@ (0,0), (0,7), (w,0) and (m,m) always belong to the crest. One maximum
and one minimum point and two saddle points.

@ L*(I1,0) is L evaluated on the crest.

@ 0 = ¢ — Is is constant on the straight line R(I, ¢, s)
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Motivation: The model and the diffusion

Geometrical interpretation of the crest

Figure: Level curves of L for u = ag/a; =0.5, I =1.2, ky =1y =1 and
ko =11 =0.
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Motivation: The model and the diffusion

Understanding the behavior of the crests

I

Understanding the behavior of the Reduced Poincaré function

4

Understanding the Scattering map
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Motivation: The model and the diffusion

We only need study two cases:

@ The first (easier) case proven in Regul. Chaotic Dyn.
h(g, p,s) = cosq (agcosp + aj cos s)
@ The second (more complicated) case, in progress
h(q, ¢, s) = cosq (apcos ¢ + aj cos(p — s))

Each case has its own characteristics and together are enough to
understand the general case.
We present just some highlights about each case.
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ki =ly=1landky =1, =0

Special Pseudo orbits: Highways for the first case

Definition: Highways
Highways are the level curves of £* such that

2mag

£1,6) = T

e Highways are “vertical”

o We always have a “pair” of highways. One goes up, the other
goes down (this depends on signal of ag/a;.)

o It is easy to construct pseudo-orbits where highways are
defined.
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Special Pseudo orbits: Highways

@

L =
It
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ki =ly=1landky =1, =0

0 < |u] <0.97

@ |pa(l)] < 1, there are two crests Cu,m(I) parameterized by:

S :EM(I’SO)
Em(1, )

—arcsin(a(I, p) sin @) mod 27 (4)

arcsin(a(I, p) sing) + 7 mod 27

1-12
406

3r/2

They are the horizontal crests )
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ki =ly=1landky =1, =0

0 < |u] < 0.625

@ For each I, the line R(I, ¢, s) and the crest Cy,m(I) have only one
intersection point.

@ We have well defined Sys and S,,,, where Sy is the scattering map
associated to the intersections between Cu(I) and R(I, ¢, s) and Sp, is
the scattering map associated to the intersection between C(I) and
R(I,¢,s).

=0
5ﬂ

(a) Level curve of £3,(1,0). (b) Level curves of L7, (1,0)
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ki =ly=1landky =1, =0

0.625 < ||

@ There are tangencies between Cmm (I, ¢) and R(I,p, s). For some value
of (I, ¢, s), there are 3 points in R(I,¢,s) N Cum(I).

@ It implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)

1-15
#=09
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ki =ly=1landky =1, =0

=09 #=0.9
3

50 5=0

(c) The three types of level curves. (d) Zoom where the scattering maps
are different

Figure: Level curves of £3,(1,6), L3V (1,6) and £3\?)(1,6)
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ki =ly=1landky =1, =0

|| > 0.97

@ For some values of I, |ua(I)| > 1, the two crests Cum are parameterized

by:
o=nm(l,s) = —arcsin(a(l,p)sins) mod 27 (5)
nm(l,s) = arcsin(a(l,p)sins)+w mod 27
They are the vertical crests J
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ki =ly=1landky =1, =0

As this happens for some values of I and when it happens, we can look this
crests locally as the horizontal crests, we restrict the domain of the Scattering

map.

p=15

R S - VIS

Figure: The level curves of £,(1,8), = 1.5.

In green, the region where the scattering map Sy is not defined.
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ki =ly=1landky =1, =0

An example of pseudo-orbit

u=l5"

Figure: In red: Inner map, blue: Scattering map, black: Highways
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ki =ly=1landky =1, =0

Time of diffusion

An estimate of the total time of diffusion between Iy and I, for simplicity only

along the highways is
Ts
Ty ~ NT, ~ == log (Ch) ,
€ €

where

@ Th =~ log (ﬂ> is the time along the homoclinic invariant manifold of A,

€
where C, = 8|ao| | 1+ _ 1465
1— p2a2(Iv)
@ N, = T;/e is the number of iterates of the scattering map along the
highway and

s —sinh(Im/2)

e T, = —————dI, wh =6—I7"(1,0) i

/10 SmTag sinon([) where iy, 7(I,0) is a
parametrization of the highway.

This estimate agrees with the optimal estimate of (Berti-Biasco-Bolle 2003)

and (Treschev 2004), a time of the order O(c ™ loge™2).
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—landl; =0

Main differences between the first and second cases

In the second case:

@ There are no Highways.

e For any value of . = ag/a; is possible to find I, and I, such
that for I}, the crests are horizontal and for I, the crests are
vertical.

e For any value of u there exists I such that the crests and
R(I,p,s) are tangent.
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—landl; =0

Same crest, different scattering map

How to take 7%(I,0) is very important and useful.
Green zones: I increases under scattering map.
Red zones: I decreases under scattering map.

Figure: “Lower” crest. . “ "
& Figure: “Upper" crest

0 /2 ™ 3m/2
0 /2 ™ 3r/2 0

28 /37



Figure: Lower |77
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—landl; =0

Combination of Scattering maps: A non-smooth vector
field

In this picture we show a combination of 6 scattering maps.

0 /2 ™ 3m/2
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Future work

A Hamiltonian with 3 + 1/2 dof

2
H(Il,[279017€02,p7 q»tag) ==+ <% +cosq — 1> +h(11712)+€ Cosqg((ph(p%t)v
where ) )
I I
h(I1, 1) = 9151 -‘1-9252

and
g(p1,@2,t) = a1 cos p1 + az cos p2 + az cos(p1 + w2 — t).
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Future work

A Hamiltonian with 3 + 1/2 dof

In this case, the Melnikov potential is
L(I,p—wT) ZA cos(pi — w;T),
where ¢ = (¢1, 2, ¢3), w = (w1,w2,w3), 3 = P1 + Y2 — 5,

o 2 Tw;
= Sh(zE)

and

:Q1I1 wQZQQIQ w3:w1—|—w2—1.
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Future work

Example of crests

S r N W a v o
P3

Figure: Horizontal crests: Figure: Crests with holes : pq = 0.7,u2 = 0.6

M1 = H2 = 0.48 W1 = Wy = 1.219.

w1 = wg = 1.219.
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Future work

Behavior of the crests

0.2 0.4 0.6 0.8 10 12 14
h

Figure: wy = wy = 1.219

wy

Figure: p1 = po = 1.2

Pink: Surface with holes, white: horizontal surfaces s(¢1, p2), purple: vertical

surfaces ¢1(p2, s), green: vertical surfaces @2 (1, ).
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Future work

Muchas gracias!
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