Scattering maps and Global Instability in Hamiltonian Systems

Amadeu Delshams ${ }^{1}$ Rodrigo G. Schaefer ${ }^{2}$

${ }^{1}$ Universitat Politècnica de Catalunya
${ }^{2}$ Uppsala Universitet
Puebla, March $10^{\text {th }}, 2020$
Celestial Mechanics and Beyond
Celebrating Don Saari's $80^{\text {th }}$ birthday

Global instability

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

$$
\begin{equation*}
H(q, p, l, \varphi)=h_{0}(q, p, I)+\varepsilon h_{1}(q, p, l, \varphi, t) \tag{1}
\end{equation*}
$$

For $\varepsilon=0$,

$$
\begin{equation*}
i=\frac{\partial h_{0}}{\partial \varphi}=0 \Rightarrow I=\text { constant } \tag{2}
\end{equation*}
$$

There exists a global instability in the variable I if for a $\varepsilon \neq 0$, there exists an orbit of the system (1) such that

$$
\begin{equation*}
\Delta I:=I(T)-I(0)=\mathcal{O}(1) \tag{3}
\end{equation*}
$$

This instability is also called Arnold diffusion.

The a priori unstable system

The result

Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables (φ, s) :

$$
\begin{gather*}
H_{\varepsilon}(p, q, l, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{l^{2}}{2}+\varepsilon h(q, \varphi, s) \tag{4}\\
h(q, \varphi, s)=f(q) g(\varphi, s), \\
f(q)=\cos q, \quad g(\varphi, s)=a_{1} \cos \left(k_{1} \varphi+l_{1} s\right)+a_{2} \cos \left(k_{2} \varphi+l_{2} s\right), \tag{5}
\end{gather*}
$$

with $k_{1}, k_{2}, I_{1}, l_{2} \in \mathbb{Z}$.
Theorem
Assume that $a_{1} a_{2} \neq 0$ and $\left|\begin{array}{ll}k_{1} & k_{2} \\ l_{1} & l_{2}\end{array}\right| \neq 0$ in (4)-(5). Then, for any $I^{*}>0$, there exists $\varepsilon^{*}=\varepsilon^{*}\left(I^{*}, a_{1}, a_{2}\right)>0$ such that for any $\varepsilon, 0<\varepsilon<\varepsilon^{*}$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some $T>0$

$$
I(0) \leq-I^{*}<I^{*} \leq I(T) \text {. }
$$

It is easy to check that if

$$
\Delta:=k_{1} l_{2}-k_{2} l_{1}=0 \quad \text { or } \quad a_{1}=0 \quad \text { or } \quad a_{2}=0
$$

there is no global instability for the variable I.
If $\Delta a_{1} a_{2} \neq 0$, after some rational linear changes in the angles, we only need to study two cases:

- The first (and easier) case [Delshams-S17]

$$
g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s
$$

- The second case [Delshams-S17a]

$$
g(\varphi, \sigma)=a_{1} \cos \varphi+a_{2} \cos \sigma
$$

where $\sigma=\varphi-s$.

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].
In the unperturbed case $\varepsilon=0$, the Hamiltonian H_{0} is integrable formed by the standard pendulum plus a rotor

$$
H_{0}(p, q, I, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{l^{2}}{2}
$$

I is constant: $\quad \triangle I:=I(T)-I(0) \equiv 0$.

For any $0<\varepsilon \ll 1$, there is a finite drift in the action of the rotor I : $\Delta I=\mathcal{O}(1)$, so we have global instability.

Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several Scattering maps and the Inner map, giving rise to diffusing pseudo-orbits.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14] for ensuring the existence of real orbits close to the pseudo-orbits.

We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\tilde{\Lambda}$.

$$
\widetilde{\Lambda}=\left\{(0,0, I, \varphi, s) ; I \in\left[-I^{*}, I^{*}\right],(\varphi, s) \in \mathbb{T}^{2}\right\}
$$

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated 4D stable $W_{\varepsilon}^{\mathrm{s}}(\widetilde{\Lambda})$ and unstable $W_{\varepsilon}^{\mathrm{u}}(\widetilde{\Lambda})$ invariant manifolds.

- The inner dynamics is the dynamics restricted to $\tilde{\Lambda}$. (Inner map)
- The outer dynamics is the dynamics along the invariant manifolds of $\widetilde{\Lambda}$. (Scattering map)
Remark: Due to the form of the perturbation, $\widetilde{\Lambda}=\widetilde{\Lambda}_{\varepsilon}$ (not essential).

For the first case $g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s$, the inner dynamics is described by the Hamiltonian system with the Hamiltonian

$$
K(I, \varphi, s)=\frac{I^{2}}{2}+\varepsilon\left(a_{1} \cos \varphi+a_{2} \cos 5\right) .
$$

In this case the inner dynamics is integrable.

Inner dynamics

For $g(\varphi, \sigma), \sigma=\varphi-s$
For $g(\varphi, \sigma)$, the inner dynamics is described by the Hamiltonian

$$
K(I, \varphi, \sigma)=\frac{l^{2}}{2}+\varepsilon\left(a_{1} \cos \varphi+a_{2} \cos \sigma\right)
$$

where $\sigma=\varphi-s$. The system associated to this Hamiltonian is not integrable and two resonances arise in $I=0$ and $I=1$.

Let $\widetilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ. A scattering map is a map S defined by $S\left(\tilde{x}_{-}\right)=\tilde{x}_{+}$if there exists $\tilde{z} \in \Gamma$ satisfying

$$
\left|\phi_{t}^{\varepsilon}(\tilde{z})-\phi_{t}^{\varepsilon}\left(\tilde{x}_{\mp}\right)\right| \longrightarrow 0 \text { as } t \longrightarrow \mp \infty
$$

that is, $W_{\varepsilon}^{u}\left(\tilde{x}_{-}\right)$intersects transversally $W_{\varepsilon}^{s}\left(\tilde{x}_{+}\right)$in \tilde{z}.

Scattering map

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

$$
\mathcal{S}_{\varepsilon}(I, \theta)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right)\right),
$$

where $\theta=\varphi-I s$ and $\mathcal{L}^{*}(I, \theta)$ is the Reduced Poincaré function.

- The variable s remains fixed under S_{ε} : it plays the role of a parameter
- Up to first order in $\varepsilon, \mathcal{S}_{\varepsilon}$ is the - ε-time flow of the Hamiltonian $\mathcal{L}^{*}(I, \theta)$
- The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^{*}(I, \theta)$

Now, we are going to construct the Reduced Poincaré function \mathcal{L}^{*}.

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\varepsilon}$

Proposition

Given $(I, \varphi, s) \in\left[-I^{*}, I^{*}\right] \times \mathbb{T}^{2}$, assume that the real function

$$
\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi-I \tau, s-\tau) \in \mathbb{R}
$$

has a non degenerate critical point $\tau^{*}=\tau(I, \varphi, s)$, where

$$
\mathcal{L}(I, \varphi, s)=\int_{-\infty}^{+\infty}\left(\cos q_{0}(\sigma)-\cos 0\right) g(\varphi+I \sigma, s+\sigma ; 0) d \sigma .
$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε-close to the point $\tilde{z}^{*}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right), q_{0}\left(\tau^{*}\right), I, \varphi, s\right) \in W^{0}(\widetilde{\Lambda})$:

$$
\tilde{z}=\tilde{z}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right)+O(\varepsilon), q_{0}\left(\tau^{*}\right)+O(\varepsilon), I, \varphi, s\right) \in W^{u}\left(\widetilde{\Lambda}_{\varepsilon}\right) \pitchfork W^{s}\left(\tilde{\Lambda}_{\varepsilon}\right)
$$

The Melnikov Potential

In our model $q_{0}(t)=4 \arctan \mathrm{e}^{t}, p_{0}(t)=2 / \cosh t$ is the separatrix for positive p of the standard pendulum $P(q, p)=p^{2} / 2+\cos q-1$.

- For $g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s$, the Melnikov potential becomes

$$
\mathcal{L}(I, \varphi, s)=A_{1}(I) \cos \varphi+A_{2} \cos s
$$

where $A_{1}(I)=\frac{2 \pi I a_{1}}{\sinh \left(\frac{I \pi}{2}\right)}$ and $A_{2}=\frac{2 \pi a_{2}}{\sinh \left(\frac{\pi}{2}\right)}$.

- For $g(\varphi, \sigma)=a_{1} \cos \varphi+a_{2} \cos \sigma(\sigma=\varphi-s)$, the Melnikov potential becomes

$$
\mathcal{L}(I, \varphi, \sigma)=A_{1}(I) \cos \varphi+A_{2}(I) \cos \sigma,
$$

where $A_{1}(I)$ is as before but now $A_{2}(I)=\frac{2(I-1) \pi a_{2}}{\sinh \left(\frac{(I-1) \pi}{2}\right)}$.

Finally, the function $\mathcal{L}^{*}(I, \theta)$ can be defined:
Definition
The Reduced Poincaré function is

$$
\mathcal{L}^{*}(I, \theta)=\mathcal{L}\left(I, \varphi-I \tau^{*}(I, \varphi, s), s-\tau^{*}(I, \varphi, s)\right),
$$

where $\theta=\varphi-I$ s.

Therefore the definition of $\mathcal{L}^{*}(I, \theta=\varphi-I s)$ depends on the function $\tau^{*}(I, \varphi, s)$.
So, we need to calculate τ^{*} to obtain the \mathcal{L}^{*}.

From the Proposition given above, we look for τ^{*} such that $\frac{\partial \mathcal{L}}{\partial \tau}\left(I, \varphi-I \tau^{*}, s-\tau^{*}\right)=0$.

Different view-points for $\tau^{*}=\tau^{*}(I, \varphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(I, \varphi, s)=\{(I, \varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$.
- Look for intersections between
$R(I, \varphi, s)=\{(I, \varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$ and a crest which is a curve of equation

$$
\left.\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi-I \tau, s-\tau)\right|_{\tau=0}=0
$$

Note that the crests are characterized by $\tau^{*}(I, \varphi, s)=0$. The crests were introduced in [Delshams-Huguet11]. A similar construction appears in [Davletshin-Treschev16].

Crests

Definition - Crests [Delshams-Huguet11]

For each I, we call crest $\mathcal{C}(I)$ the set of curves in the variables (φ, s) of equation

$$
\begin{equation*}
I \frac{\partial \mathcal{L}}{\partial \varphi}(I, \varphi, s)+\frac{\partial \mathcal{L}}{\partial s}(I, \varphi, s)=0 \tag{6}
\end{equation*}
$$

which in our case can be rewritten as

$$
g(\varphi, s): \mu \alpha(I) \sin \varphi+\sin s=0, \quad \text { with } \alpha(I)=\frac{I^{2} \sinh \left(\frac{\pi}{2}\right)}{\sinh \left(\frac{\pi I}{2}\right)}, \quad \mu=\frac{a_{1}}{a_{2}} .
$$

$g(\varphi, \sigma=\varphi-s): \quad \mu \alpha(I) \sin \varphi+\sin \sigma=0, \quad$ with $\alpha(I)=\frac{I^{2} \sinh \left(\frac{(I-1) \pi}{2}\right)}{(I-1)^{2} \sinh \left(\frac{\pi I}{2}\right)}, \quad \mu=\frac{a_{1}}{a_{2}}$.

- For any I, the critical points of the Melnikov potential $\mathcal{L}(I, \cdot, \cdot)((0,0),(0, \pi)$, $(\pi, 0)$ and (π, π) : one maximum, one minimum point and two saddle points) always belong to the crest $\mathcal{C}(I)$.
- $\mathcal{L}^{*}(I, \theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta=\varphi$ - Is is constant on the NHIM line $R(I, \varphi, s)$

Understanding the behavior of the crests
\Downarrow
Understanding the behavior of the Reduced Poincaré function
\Downarrow
Understanding the Scattering map

- For $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by:

$$
\begin{align*}
s=\xi_{M}(I, \varphi) & =-\arcsin (\mu \alpha(I) \sin \varphi) & \bmod 2 \pi \tag{7}\\
\xi_{m}(I, \varphi) & =\arcsin (\mu \alpha(I) \sin \varphi)+\pi & \bmod 2 \pi
\end{align*}
$$

They are "horizontal" crests

- For each I, the NHIM line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ has only one intersection point.
- The scattering map S_{M} associated to the intersections between $\mathcal{C}_{M}(I)$ and $R(I, \varphi, s)$ is well defined for any $\varphi \in \mathbb{T}$. Analogously for S_{m}, changing M to m . In the variables ($I, \theta=\varphi-I s)$, both scattering maps $\mathcal{S}_{\mathrm{M}}, \mathcal{S}_{\mathrm{m}}$ are globally well defined.

First case: $g(\varphi, s)$
 $0.625<|\mu|$

- There are tangencies between $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I, \varphi)$ and $R(I, \varphi, s)$. For some value of (I, φ, s), there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{M, \mathrm{~m}}(I)$.
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

(c) The three types of level curves.

(d) Zoom where the scattering maps are different

Figure: Level curves of $\mathcal{L}_{M}^{*}(I, \theta), \mathcal{L}_{M}^{*(1)}(I, \theta)$ and $\mathcal{L}_{M}^{*(2)}(I, \theta)$

First case: $g(\varphi, s) \quad|\mu|>0.97$

- For some values of $I,|\mu \alpha(I)|>1$, the two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}$ are parameterized by:

$$
\begin{align*}
\varphi=\eta_{M}(I, s) & =-\arcsin (\mu \alpha(I) \sin s) & \bmod 2 \pi \tag{8}\\
\eta_{m}(I, s) & =\arcsin (\mu \alpha(I) \sin s)+\pi & \bmod 2 \pi
\end{align*}
$$

They are "vertical" crests

For the values of I for which horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

Figure: The level curves of $\mathcal{L}_{\mathrm{M}}^{*}(I, \theta), \mu=1.5$.
In green, the region where the scattering map S_{M} is not defined.

Highways

Definition: Highways
Highways are the level curves of \mathcal{L}^{*} such that

$$
\mathcal{L}^{*}(I, \theta)=\frac{2 \pi a_{1}}{\sinh (\pi / 2)}
$$

- The highways are "vertical" in the variables (φ, s)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu=a_{1} / a_{2}$)
- The highways give rise to fast diffusing pseudo-orbits

Highways

Figure: The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^{*}(I, \theta)$

Figure: In red: Inner map, blue: Scattering map, black: Highways, $\mu=1.5$.

Time of diffusion

An estimate of the total time of diffusion between $-I^{*}$ and I^{*}, close to the highway, is

$$
T_{\mathrm{d}}=\frac{T_{\mathrm{s}}}{\varepsilon}\left[2 \log \left(\frac{C}{\varepsilon}\right)+\mathcal{O}\left(\varepsilon^{b}\right)\right], \text { for } \varepsilon \rightarrow 0, \text { where } 0<b<1
$$

with

$$
T_{\mathrm{s}}=T_{\mathrm{s}}\left(I^{*}, a_{1}, a_{2}\right)=\int_{0}^{I^{*}} \frac{-\sinh (\pi I / 2)}{\pi a_{1} I \sin \psi_{\mathrm{h}}(I)} d I
$$

where $\psi_{\mathrm{h}}=\theta-I \tau^{*}(I, \theta)$ is the parameterization of the highway $\mathcal{L}^{*}\left(I, \psi_{\mathrm{h}}\right)=A_{2}$, and

$$
C=C\left(I^{*}, a_{1}, a_{2}\right)=16\left|a_{1}\right|\left(1+\frac{1.465}{\sqrt{1-\mu^{2} A^{2}}}\right)
$$

where $A=\max _{I \in\left[0, I^{*}\right]} \alpha(I)$, with $\alpha(I)=\frac{\sinh \left(\frac{\pi}{2}\right) I^{2}}{\sinh \left(\frac{\pi I}{2}\right)}$ and $\mu=a_{1} / a_{2}$.
Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01] and quantifies the general optimal diffusion estimate $\mathcal{O}\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ of [Berti-Biasco-Bolle03] and [Treschev04].

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Now we describe the case which the perturbation takes the form

$$
h(\varphi, \sigma)=\cos q\left(a_{1} \cos \varphi+a_{2} \cos \sigma\right),
$$

where $\sigma=\varphi-s$.

Second case: $g(\varphi, \sigma), \sigma=\varphi-s \quad$ Main differences

In the second case:

- For $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by $\sigma=\xi_{M}(I, \varphi)$ and $\xi_{m}(I, \varphi)$. For $|\mu \alpha(I)|>1, \mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by $\varphi=\eta_{M}(I, \sigma)$ and $\eta_{m}(I, \sigma)$. The crests lie on the plane (φ, σ)
- There are no Highways.
- For any value of $\mu=a_{1} / a_{2}$ is possible to find I_{h} and I_{v} such that for $I=I_{\mathrm{h}}$ the crests are horizontal and for $I=I_{\mathrm{V}}$ the crests are vertical.
- For any value of μ there exists / such that the crests and some NHIM line are tangent. There are always multiple scattering maps
Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of $\tau^{*}(I, \theta)$ is very important and useful.

Figure: Going down along NHIM lines

Figure: The "lower" crest

Green zones: I increases under the scattering map.
Red zones: I decreases under the scattering map.

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Kinds of scattering maps

Figure: Going up along NHIM lines

Figure: The "upper" crest

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Kinds of scattering maps

Figure: Minimal time

Figure: Minimal $\left|\tau^{*}\right|$ between
"lower" and "upper" crest

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Piecewise smooth $\mathcal{S}(I, \theta)$

In this picture we show a combination of 3 scattering maps.

Figure: First intersection

Figure: Minimal $\left|\tau^{*}\right|$ between $\mathcal{C}_{\mathrm{M}}(I)$ and $\mathcal{C}_{\mathrm{m}}(I)$

Thank you very much.
Muchas gracias.
Moltes gràcies.
Muito obrigado.

A short bibliography

- Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with optimal diffusion time.J.Math.Pures Appl.. 2003.
- Delshams, de la LLave, Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of \mathbb{T}^{2}. Comm. Math. Phys.. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model.Mem. Amer. Math. Soc.. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion.Advances in Mathematics.2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity. 2009.

A short bibliography

- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equations. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations.Regular and Chaotics Dynamics. 2017.
- Delshams, Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics.Discrete and Continuous Dynamical Systems. 2018.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. arXiv. 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity . 2004.

