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Global instability

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

H(q, p, I , ϕ) = h0(q, p, I ) + εh1(q, p, I , ϕ, t). (1)

For ε = 0,

İ =
∂h0

∂ϕ
= 0⇒ I = constant. (2)

There exists a global instability in the variable I if for a ε 6= 0, there exists
an orbit of the system (1) such that

4I := I (T )− I (0) = O(1). (3)

This instability is also called Arnold diffusion.
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The a priori unstable system The result

Consider a pendulum and a rotor plus a time periodic perturbation
depending on two harmonics in the variables (ϕ, s):

Hε(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
+ εh(q, ϕ, s) (4)

h(q, ϕ, s) = f (q)g(ϕ, s),

f (q) = cos q, g(ϕ, s) = a1 cos(k1ϕ+ l1s) + a2 cos(k2ϕ+ l2s),
(5)

with k1, k2, l1, l2 ∈ Z.

Theorem

Assume that a1a2 6= 0 and
∣∣∣k1 k2
l1 l2

∣∣∣ 6= 0 in (4)-(5). Then, for any I ∗ > 0,

there exists ε∗ = ε∗(I ∗, a1, a2) > 0 such that for any ε, 0 < ε < ε∗, there
exists a trajectory (p(t), q(t), I (t), ϕ(t)) such that for some T > 0

I (0) ≤ −I ∗ < I ∗ ≤ I (T ).

Rodrigo G. Schaefer (UU) Global Instability in Hamiltonian Systems Celestial Mechanics and Beyond 3 / 33



The a priori unstable system Assumptions and Reduction

It is easy to check that if

∆ := k1l2 − k2l1 = 0 or a1 = 0 or a2 = 0

there is no global instability for the variable I .

If ∆a1a2 6= 0, after some rational linear changes in the angles, we only
need to study two cases:

The first (and easier) case [Delshams-S17]

g(ϕ, s) = a1 cosϕ+ a2 cos s

The second case [Delshams-S17a]

g(ϕ, σ) = a1 cosϕ+ a2 cosσ,

where σ = ϕ− s.
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The a priori unstable system The unperturbed system

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case ε = 0, the Hamiltonian H0 is integrable formed by
the standard pendulum plus a rotor

H0(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
.

I is constant: 4I := I (T )− I (0) ≡ 0.

For any 0 < ε� 1, there is a finite drift in the action of the rotor I :
4I = O(1), so we have global instability.
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The a priori unstable system Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

To construct iterates under several Scattering maps and the Inner
map, giving rise to diffusing pseudo-orbits.

To use previous results about Shadowing [Fontich-Mart́ın00],
[Gidea-Llave-Seara14] for ensuring the existence of real orbits close to
the pseudo-orbits.
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The a priori unstable system Two dynamics in the NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics on a large invariant object Λ̃.

Λ̃ = {(0, 0, I , ϕ, s); I ∈ [−I ∗, I ∗] , (ϕ, s) ∈ T2}.

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated
4D stable W s

ε (Λ̃) and unstable W u
ε (Λ̃) invariant manifolds.

The inner dynamics is the dynamics restricted to Λ̃. (Inner map)

The outer dynamics is the dynamics along the invariant manifolds of
Λ̃. (Scattering map)

Remark: Due to the form of the perturbation, Λ̃ = Λ̃ε (not essential).
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Inner dynamics For the first case g(ϕ, s)

For the first case g(ϕ, s) = a1 cosϕ+ a2 cos s, the inner dynamics is
described by the Hamiltonian system with the Hamiltonian

K (I , ϕ, s) =
I 2

2
+ ε (a1 cosϕ+ ((((hhhha2 cos s ) .

In this case the inner dynamics is integrable.
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Inner dynamics For g(ϕ, σ), σ = ϕ− s

For g(ϕ, σ), the inner dynamics is described by the Hamiltonian

K (I , ϕ, σ) =
I 2

2
+ ε (a1 cosϕ+ a2 cosσ) ,

where σ = ϕ− s. The system associated to this Hamiltonian is not
integrable and two resonances arise in I = 0 and I = 1.
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Outer dynamics Scattering map

Let Λ̃ be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold Γ. A scattering map is a map S defined by
S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φεt (z̃)− φεt (x̃∓)| −→ 0 as t −→ ∓∞

that is, W u
ε (x̃−) intersects transversally W s

ε (x̃+) in z̃ .
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Outer dynamics Scattering map

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

Sε(I , θ) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2)

)
,

where θ = ϕ− Is and L∗(I , θ) is the Reduced Poincaré function.

The variable s remains fixed under Sε: it plays the role of a parameter

Up to first order in ε, Sε is the −ε-time flow of the Hamiltonian L∗(I , θ)

The scattering map jumps O(ε) distances along the level curves of L∗(I , θ)

Now, we are going to construct the Reduced Poincaré function L∗.
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Outer dynamics The Melnikov Potential

To get a scattering map we search for homoclinic orbits to Λ̃ε

Proposition

Given (I , ϕ, s) ∈ [−I ∗, I ∗] × T2, assume that the real function

τ ∈ R 7−→ L(I , ϕ− I τ, s − τ) ∈ R

has a non degenerate critical point τ∗ = τ(I , ϕ, s), where

L(I , ϕ, s) =

∫ +∞

−∞
(cos q0(σ)− cos 0) g(ϕ+ Iσ, s + σ; 0)dσ.

Then, for 0 < |ε| small enough, there exists a transversal homoclinic point z̃ to

Λ̃ε, which is ε-close to the point z̃∗(I , ϕ, s) = (p0(τ∗), q0(τ∗), I , ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I , ϕ, s) = (p0(τ∗) + O(ε), q0(τ∗) + O(ε), I , ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).
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Outer dynamics The Melnikov Potential

In our model q0(t) = 4 arctan et , p0(t) = 2/cosh t is the separatrix for
positive p of the standard pendulum P(q, p) = p2/2 + cos q − 1.

For g(ϕ, s) = a1 cosϕ+ a2 cos s, the Melnikov potential becomes

L(I , ϕ, s) = A1(I ) cosϕ+ A2 cos s,

where A1(I ) =
2π I a1

sinh
(
I π
2

) and A2 =
2π a2

sinh
(
π
2

) .

For g(ϕ, σ) = a1 cosϕ+ a2 cosσ (σ = ϕ− s), the Melnikov potential
becomes

L(I , ϕ, σ) = A1(I ) cosϕ+ A2(I ) cosσ,

where A1(I ) is as before but now A2(I ) =
2 (I − 1)π a2

sinh
(

(I−1)π
2

) .
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Outer dynamics Reduced Poincaré function

Finally, the function L∗(I , θ) can be defined:

Definition

The Reduced Poincaré function is

L∗(I , θ) = L(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s)),

where θ = ϕ− I s.

Therefore the definition of L∗(I , θ = ϕ− Is) depends on the function
τ∗(I , ϕ, s).
So, we need to calculate τ∗ to obtain the L∗.
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Outer dynamics The function τ ∗(I , ϕ, s)

From the Proposition given above, we look for τ∗ such that
∂L
∂τ (I , ϕ− I τ∗, s − τ∗) = 0.

Different view-points for τ∗ = τ∗(I , ϕ, s)

Look for critical points of L on the straight line, called NHIM line
R(I , ϕ, s) = {(I , ϕ− I τ, s − τ), τ ∈ R}.
Look for intersections between
R(I , ϕ, s) = {(I , ϕ− I τ, s − τ), τ ∈ R} and a crest which is a curve
of equation

∂L
∂τ

(I , ϕ− I τ, s − τ)|τ=0 = 0.

Note that the crests are characterized by τ∗(I , ϕ, s) = 0.
The crests were introduced in [Delshams-Huguet11]. A similar
construction appears in [Davletshin-Treschev16].
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Outer dynamics Crests

Definition - Crests [Delshams-Huguet11]

For each I , we call crest C(I ) the set of curves in the variables (ϕ, s) of equation

I
∂L
∂ϕ

(I , ϕ, s) +
∂L
∂s

(I , ϕ, s) = 0. (6)

which in our case can be rewritten as

g(ϕ, s): µα(I ) sinϕ+ sin s = 0, with α(I ) =
I 2 sinh( π

2
)

sinh( π I
2

)
, µ =

a1

a2
.

g(ϕ, σ = ϕ− s): µα(I ) sinϕ+ sinσ = 0, with α(I ) =
I 2 sinh(

(I−1)π
2

)

(I−1)2 sinh( π I
2

)
, µ =

a1

a2
.

For any I , the critical points of the Melnikov potential L(I , ·, ·) ((0, 0), (0, π),
(π, 0) and (π, π): one maximum, one minimum point and two saddle points)
always belong to the crest C(I ).

L∗(I , θ) is nothing else but L evaluated on the crest C(I ).

θ = ϕ− Is is constant on the NHIM line R(I , ϕ, s)
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Outer dynamics Geometrical interpretation

Understanding the behavior of the crests

⇓
Understanding the behavior of the Reduced Poincaré function

⇓
Understanding the Scattering map
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First case: g(ϕ, s) 0 < |µ| < 0.97

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by:

s = ξM(I , ϕ) = − arcsin(µα(I ) sinϕ) mod 2π (7)

ξm(I , ϕ) = arcsin(µα(I ) sinϕ) + π mod 2π

They are “horizontal” crests
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First case: g(ϕ, s) 0 < |µ| < 0.625

For each I , the NHIM line R(I , ϕ, s) and the crest CM,m(I ) has only one
intersection point.

The scattering map SM associated to the intersections between CM(I ) and
R(I , ϕ, s) is well defined for any ϕ ∈ T. Analogously for Sm, changing M to m. In
the variables (I , θ = ϕ− Is), both scattering maps SM, Sm are globally well defined.

(a) Level curves of L∗M(I , θ) (b) Level curves of L∗m(I , θ)
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First case: g(ϕ, s) 0.625 < |µ|

There are tangencies between CM,m(I , ϕ) and R(I , ϕ, s). For some value of
(I , ϕ, s), there are 3 points in R(I , ϕ, s) ∩ CM,m(I ).

This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)
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First case: g(ϕ, s) 0.625 < |µ|

(c) The three types of level curves. (d) Zoom where the scattering maps
are different

Figure: Level curves of L∗M(I , θ), L∗(1)
M (I , θ) and L∗(2)

M (I , θ)
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First case: g(ϕ, s) |µ| > 0.97

For some values of I , |µα(I )| > 1, the two crests CM,m are parameterized by:

ϕ = ηM(I , s) = − arcsin(µα(I ) sin s) mod 2π (8)

ηm(I , s) = arcsin(µα(I ) sin s) + π mod 2π

They are “vertical” crests
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First case: g(ϕ, s) |µ| > 0.97

For the values of I for which horizontal crests become vertical, it is not
always possible to prolong in a continuous way the scattering maps, so the
domain of the scattering map has to be restricted.

Figure: The level curves of L∗M(I , θ), µ = 1.5.

In green, the region where the scattering map SM is not defined.
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First case: g(ϕ, s) Highways

Definition: Highways

Highways are the level curves of L∗ such that

L∗(I , θ) =
2πa1

sinh(π/2)
.

The highways are “vertical” in the variables (ϕ, s)

We always have a pair of highways. One goes up, the other goes
down (this depends on the sign of µ = a1/a2)

The highways give rise to fast diffusing pseudo-orbits
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First case: g(ϕ, s) Highways

Figure: The scattering map jumps O(ε) distances along the level curves of
L∗(I , θ)
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First case: g(ϕ, s) An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways, µ = 1.5.
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First case: g(ϕ, s) Time of diffusion

An estimate of the total time of diffusion between −I ∗ and I ∗, close to the highway, is

Td =
Ts

ε

[
2 log

(
C

ε

)
+O(εb)

]
, for ε→ 0, where 0 < b < 1,

with

Ts = Ts(I
∗, a1, a2) =

∫ I∗

0

− sinh(πI/2)

πa1I sinψh(I )
dI ,

where ψh = θ − Iτ∗(I , θ) is the parameterization of the highway L∗(I , ψh) = A2, and

C = C(I ∗, a1, a2) = 16 |a1|

(
1 +

1.465√
1− µ2A2

)

where A = maxI∈[0,I∗] α(I ), with α(I ) =
sinh( π

2
) I 2

sinh( π I
2

)
and µ = a1/a2.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01]

and quantifies the general optimal diffusion estimate O
(

1

ε
log

1

ε

)
of

[Berti-Biasco-Bolle03] and [Treschev04].
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Second case: g(ϕ, σ), σ = ϕ− s

Now we describe the case which the perturbation takes the form

h(ϕ, σ) = cos q (a1 cosϕ+ a2 cosσ) ,

where σ = ϕ− s.
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Second case: g(ϕ, σ), σ = ϕ− s Main differences

In the second case:

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by
σ = ξM(I , ϕ) and ξm(I , ϕ). For |µα(I )| > 1, CM,m(I ) parameterized
by ϕ = ηM(I , σ) and ηm(I , σ). The crests lie on the plane (ϕ, σ)

There are no Highways.

For any value of µ = a1/a2 is possible to find Ih and Iv such that for
I = Ih the crests are horizontal and for I = Iv the crests are vertical.

For any value of µ there exists I such that the crests and some NHIM
line are tangent.There are always multiple scattering maps
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of τ∗(I , θ) is
very important and useful.

Figure: Going down along NHIM
lines Figure: The “lower” crest

Green zones: I increases under the scattering map.
Red zones: I decreases under the scattering map.
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

Figure: Going up along NHIM lines Figure: The “upper” crest
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

Figure: Minimal time
Figure: Minimal |τ∗| between
“lower” and “upper” crest
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Second case: g(ϕ, σ), σ = ϕ− s Piecewise smooth S(I , θ)

In this picture we show a combination of 3 scattering maps.

Figure: First intersection
Figure: Minimal |τ∗| between
CM(I ) and Cm(I )
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Thank you very much.

Muchas gracias.

Moltes gràcies.

Muito obrigado.
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