Lecture 4: Arnold Diffusion in Celestial Mechanics
 Arnold Diffusion and applications

Rodrigo G. Schaefer
Department of Mathematics
Uppsala Universitet

November $19^{\text {th }}, 2020$

We will study the paper

Global Instability in the Restricted Planar Elliptic Three Body Problem

by Delshams, Kaloshin, de la Rosa and Seara.

RPETBP

Consider the motion of a massless (a comet) particle q under the attraction of two massive bodies $q_{\mathbf{S}}$ and $q_{\mathbf{J}}$ with masses $m_{\mathbf{S}}=1-\mu$ and $m_{\mathbf{J}}=\mu$, respectively, which move in elliptic orbits with eccentricity e_{J} around their center of mass.
q_{S} and q_{J} are called primaries (Sun and Jupiter,respectively).
Denote by $G=q \times \dot{q}$ the angular momentum of the particle q, in the paper, the authors proved that there exist solution with a large variation (diffusion) of G.

Precisely, the following theorem:

RPETBP

Theorem

There exist two constants $C>0, c>0$ such that for any $0<e_{J}<c / C$ there is $\mu^{*}=\mu^{*}\left(C, c, e_{J}\right)>0$ such that for any $0<\mu<\mu^{*}$ and any $C \leq G_{1}^{*}<G_{2}^{*} \leq c / e$, there exists a trajectory of the RPETBP such that $G(0)<G_{1}^{*}, G(T)>G_{2}^{*}$ for some $T>0$.

RPETBP

Equations of motion

From the gravitational Newton's law

$$
\frac{d^{2} q}{d t^{2}}=(1-\mu) \frac{q_{\mathrm{S}}-q}{\left|q_{\mathrm{S}}-q\right|^{3}}+\mu \frac{q_{\mathrm{J}}-q}{\left|q_{\mathrm{J}}-q\right|^{3}}
$$

By introduce $p=d q / d t$, we can rewrite as a $2+1 / 2$ degrees of freedom Hamiltonian systems

$$
H_{\mu}\left(q, p, t ; e_{\mathrm{J}}\right)=\frac{p^{2}}{2}-U_{\mu}\left(q, t ; e_{\mathrm{i}}\right)
$$

where

$$
U_{\mu}\left(q, t ; e_{\jmath}\right)=\frac{1-\mu}{\left|q-q_{\mathrm{s}}\right|}+\frac{\mu}{\left|q-q_{J}\right|}
$$

By writing the system in polar coordinates:
$q=\rho(\cos \alpha, \sin \alpha), \quad q_{\mathrm{S}}=\mu r(\cos f, \sin f), \quad q_{\mathrm{J}}=-(1-\mu) r(\cos f, \sin f)$,
where r is the distance between the primary bodies and $f\left(t, e_{\mathrm{J}}\right)$ is called the true anomaly, and more

$$
r=\frac{1-e_{\mathrm{J}}^{2}}{1+e_{\mathrm{J}} \cos f} \quad \text { and } \quad \frac{d f}{d t}=\frac{\left(1+e_{\mathrm{J}} \cos f\right)^{2}}{\left(1-e_{\mathrm{J}}\right)^{3 / 2}}
$$

RPETBP

In the new coordinates, the Hamiltonian takes the form

$$
H_{\mu}^{*}\left(\rho, \alpha, y, G, t ; e_{\jmath}\right)=\frac{y^{2}}{2}+\frac{G^{2}}{2 \rho^{2}}-U_{\mu}^{*}\left(\rho, \alpha, t ; e_{\jmath}\right)
$$

where

$$
\begin{gathered}
U_{\mu}^{*}=\frac{1-\mu}{\sqrt{\rho^{2}-2 \mu r \rho \cos (\alpha-f)+\mu^{2} r^{2}}} \\
+\frac{\mu}{\sqrt{\rho^{2}+2(1-\mu) r \rho \cos (\alpha-f)+(1-\mu)^{2} r^{2}}}
\end{gathered}
$$

For $e_{\mathrm{J}}=0, r=1$ and $\frac{d f}{d t}=1$, then $f=t$. This is the circular case and by taking a new angle $\alpha-t$ we have that this is a 2 d.o.f Hamiltonian. (there is no diffusion).

To study the behavior of the solutions close to $\rho=\infty$, we use the non canonical McGehee coordinates

$$
\rho=\frac{2}{x^{2}} .
$$

The previous Hamiltonian becomes into

$$
\mathcal{H}_{\mu}\left(x, \alpha, y, G, t ; e_{\jmath}\right)=\frac{y^{2}}{2}+\frac{x^{4} G^{2}}{8}-\underbrace{\frac{x^{2}}{2}\left(\frac{1-\mu}{\sigma_{\mathrm{S}}}+\frac{\mu}{\sigma_{\mathrm{J}}}\right)}_{\mathcal{U}_{\mu}\left(x, \alpha, t, e_{\jmath}\right),}
$$

where

- $\sigma_{\mathrm{S}}^{2}=1-\mu r x^{2} \cos (\alpha-f)+\frac{\mu^{2} r^{2} x^{4}}{4}$
- $\sigma_{J}^{2}=1+(1-\mu) r x^{2} \cos (\alpha-f)+\frac{(1-\mu)^{2} r^{2} x^{4}}{4}$

The differential equations in these coordinates we have

$$
\begin{array}{rr}
\frac{d x}{d t}=-\frac{x^{3}}{4} \frac{\partial \mathcal{H}_{\mu}}{\partial y} & \frac{d y}{d t}=\frac{-x^{3}}{4}\left(-\frac{\partial \mathcal{H}_{\mu}}{\partial x}\right) \\
\frac{d \alpha}{d t}=\frac{\partial \mathcal{H}_{\mu}}{\partial G} & \frac{d G}{d t}=-\frac{\partial \mathcal{H}_{\mu}}{\partial \alpha}
\end{array}
$$

For $\mu=0$, the above system represents the Kepler problem.

$$
\mathcal{H}_{0}(x, y, G)=\frac{y^{2}}{2}+\frac{x^{4} G^{2}}{8}-\frac{x^{2}}{2}
$$

whith differential equations

$$
\begin{array}{rr}
\frac{d x}{d t}=\frac{-x^{3} y}{4} & \frac{d y}{d t}=\frac{G^{2} x^{6}}{8}-\frac{x^{4}}{4} \\
\frac{d \alpha}{d t}=\frac{x^{4} G}{4} & \frac{d G}{d t}=0
\end{array}
$$

- G is conserved.
- At $(x, y)=(0,0), \alpha$ and G are constants
- $\Lambda_{\alpha, G}=\{(0, \alpha, 0, G)\}$ is a parabolic equilibrium point (has the linear part equal to zero) and has 1D homoclinic invariant manifold $\gamma_{\alpha, G}=W^{\mathrm{u}}\left(\Lambda_{\alpha, G}\right)=W^{\mathrm{s}}\left(\Lambda_{\alpha, G}\right)$

RPETBP

Then,

$$
\Lambda_{\infty}=\bigcup_{\alpha, G} \Lambda_{\alpha, G}
$$

is a 2D manifold of parabolic equilibrium points.
By extending the phase space (we can consider the time $s \in \mathbb{T}$ and $d s / d t=1$):

$$
\begin{equation*}
\tilde{\Lambda}_{\infty}=\left\{(0, \alpha, 0, G, s) \in \mathbb{T} \times \mathbb{R}_{+} \times \mathbb{T}\right\} \tag{3D}
\end{equation*}
$$

with invariant stable and unstable manifold given by

$$
\begin{align*}
\tilde{\gamma} & =\bigcup_{\alpha, G} \tilde{\gamma}_{\alpha, G}=W^{\mathrm{u}}\left(\tilde{\Lambda}_{\infty}\right)=W^{\mathrm{s}}\left(\tilde{\Lambda}_{\infty}\right) \\
& =\left\{(x, \alpha, y, G, s):(\alpha, G, s) \in \mathbb{T} \times \mathbb{R}_{+} \times \mathbb{T}, \mathcal{H}_{0}=0\right\} \tag{4D}
\end{align*}
$$

$\Rightarrow \tilde{\Lambda}_{\infty}$ is Topologically equivalent to a Normally Invariant Manifold. TNHIM.

For $\mu>0$, we can write \mathcal{H}_{μ} as

$$
\mathcal{H}_{\mu}\left(x, \alpha, y, G, s ; e_{\jmath}\right)=\mathcal{H}_{0}(x, y, G)-\mu \Delta \mathcal{U}_{\mu}\left(x, \alpha, s ; e_{\jmath}\right),
$$

where $\Delta \mathcal{U}_{\mu}\left(x, \alpha, s ; e_{\jmath}\right):=\mathcal{U}_{\mu}\left(x, \alpha, s ; e_{\jmath}\right)-x^{2} / 2$.
Therefore, it is possible to study \mathcal{H}_{μ} as a perturbation of the Kepler problem ($\mu=0$).

- $\tilde{\Lambda}_{\infty}$ remains invariant for $\mu>0$ and all the periodic orbits $\tilde{\Lambda}_{\alpha, G}$ persist.
- The inner dynamics (the dynamics restricted to $\tilde{\Lambda}_{\infty}$) is trivial, since it consists of fixed points. Only the time varies.
- For $\mu \ll 1, W^{\mathrm{u}}\left(\tilde{\Lambda}_{\infty}\right)$ and $W^{\mathrm{s}}\left(\tilde{\Lambda}_{\infty}\right)$ exist, but they do not longer coincide.

The strategy in this case is very similar to the strategy applied in the last lecture's example, replacing the NHIM by TNHIM.

- To use the Melnikov Potential to find the transverse intersections between $W^{u}\left(\tilde{\Lambda}_{\infty}\right)$ and $W^{s}\left(\tilde{\Lambda}_{\infty}\right)$.
- To define at least two scattering maps by using the found intersections in the previous step.
- To combine them in order to obtain a pseudo-orbit that presents a diffusion on action variable G.
- To apply a suitable shadowing lemma to ensure the existence of a real orbit "close" to the pseudo-orbit.

Remark: As the inner dynamics are fixed points, they are not useful for diffusion paths. This is the reason that we have to combine different scattering maps.

The Melnikov potential is

$$
\mathcal{L}\left(\alpha, G, s ; e_{\jmath}\right)=\int_{-\infty}^{\infty} \Delta \mathcal{U}_{0}\left(x_{\mathrm{h}}(t ; G), \alpha_{\mathrm{h}}(t ; \alpha, G), s+t ; e_{\jmath}\right) d t
$$

where $x_{\mathrm{h}}, \alpha_{\mathrm{h}}$ are a parametrization of the homoclinic manifold ($\mu=0$) and $\Delta \mathcal{U}_{0}=\lim _{\mu \rightarrow 0} \Delta \mathcal{U}_{\mu}$

Proposition

Given $(\alpha, G, s) \in \mathbb{T} \times \mathbb{R}_{+} \times \mathbb{T}$, assume that the function

$$
\tau \in \mathbb{R} \rightarrow \mathcal{L}\left(\alpha, G, s-\tau ; e_{\jmath}\right)
$$

has a non-degenerate critical point $\tau^{*}=\tau^{*}\left(\alpha, G, s ; e_{J}\right)$. Then, there exists $\mu^{*}=\mu^{*}\left(G, e_{J}\right)$, such that for $0<\mu<\mu^{*}$, close to the point $\tilde{\mathbf{z}}_{0}^{*} \in \tilde{\gamma}$, there exists a locally unique point $\tilde{\mathbf{z}}^{*} \in W^{u}\left(\tilde{\Lambda}_{\infty}\right) \pitchfork W^{\mathrm{s}}\left(\tilde{\Lambda}_{\infty}\right) \pitchfork N\left(\tilde{\mathbf{z}}_{0}^{*}\right)$ of the form

$$
\tilde{\mathbf{z}}^{*}=\tilde{\mathbf{z}}_{0}^{*}+\mathcal{O}(\mu)
$$

Also, there exist unique points
$\tilde{\mathbf{x}}_{ \pm}=\left(0, \alpha_{ \pm}, 0\right)=(0, \alpha, 0, G, s)+\mathcal{O}(\mu) \in \tilde{\Lambda}_{\infty}$ such that

$$
\tilde{\phi}_{t, \mu}\left(\tilde{z}^{*}\right)-\tilde{\phi}_{t, \mu}\left(\tilde{\mathbf{x}}_{ \pm}\right) \rightarrow 0 \quad \text { as } \quad t \rightarrow \pm \infty
$$

RPETBP

Scattering map

The last property says that we can define a scattering map

$$
\tilde{\mathbf{x}}_{+}=S\left(\tilde{\mathbf{x}}_{-}\right)
$$

Once we have $\tau^{*}\left(\alpha, G, s ; e_{\jmath}\right)$, we can define the Reduced Poincaré function

$$
\mathcal{L}^{*}\left(\alpha, G, e_{\jmath}\right):=\mathcal{L}\left(\alpha, G, s-\tau^{*}\right) .
$$

And the Scattering map formula is
$\mathcal{S}_{\mu}(\alpha, \boldsymbol{G}, s)=\left(\alpha-\mu \frac{\partial \mathcal{L}^{*}}{\partial \boldsymbol{G}}\left(\alpha, \boldsymbol{G}, e_{\jmath}\right)+\mathcal{O}\left(\mu^{2}\right), \boldsymbol{G}+\mu \frac{\partial \mathcal{L}^{*}}{\partial \alpha}\left(\alpha, \boldsymbol{G}, e_{\jmath}\right)+\mathcal{O}\left(\mu^{2}\right)\right)$
Remark: Note that from the second component of \mathcal{S}_{μ},

$$
G_{+}-G_{-}=\mu \frac{\partial \mathcal{L}^{*}}{\partial \alpha}\left(\alpha, G, e_{J}\right)+\mathcal{O}\left(\mu^{2}\right)
$$

After checking that is o possible to define a scattering map, the following steps are necessary:

- Calculate the Melnikov Potential. (Fourier Series)
- To check that two different scattering maps (\mathcal{L} is cosine-like + Poisson bracket)
- To construct a pseudo orbit and to apply shadow lemma.

RPETBP

Computation of \mathcal{L}

The Melnikov Potential is

$$
\begin{aligned}
& \mathcal{L}\left(\alpha, G, s ; e_{J}\right)= \\
& \int_{-\infty}^{\infty}\left\{\frac{x_{h}^{2}(t)}{\left[4+x_{h}^{4}(t) r(t+s)^{2}+4 x_{\mathrm{h}}^{2}(t) r(t+s) \cos \left(\alpha_{\mathrm{h}}(t)-f(t+s)\right)\right]^{1 / 2}}\right. \\
& \left.+\left(\frac{x_{\mathrm{h}}^{2}(t)}{2}\right) r(t+s) \cos \left(\alpha_{\mathrm{h}}(t)-f(t+s)\right)-\frac{x_{\mathrm{h}}(t)}{2}\right\} d t
\end{aligned}
$$

- \mathcal{L} is computed via Fourier series on the angles α and s (This computation takes 30 pages!).
- \mathcal{L} is an even function on the angles variables, then it has a Fourier Cosine series.

$$
\mathcal{L}\left(\alpha, G, s ; e_{J}\right)=L_{00}+2 \sum_{k \geq 1} L_{0 k} \cos (k \alpha)+2 \sum_{q \geq 1} \sum_{k \geq 1} L_{q k} \cos (q s+k \alpha) .
$$

Cosine-like

For $G>C$ for C large enough and $e_{\mathrm{J}} G<c$ for c small enough

$$
\mathcal{L}\left(\alpha, G, s ; e_{J}\right)=\underbrace{\mathcal{L}_{0}\left(\alpha, G ; e_{\jmath}\right)+\mathcal{L}_{1}\left(\alpha, G, s ; e_{J}\right)}_{\text {dominant part }}+\underbrace{\mathcal{L}_{\geq 2}\left(\alpha, G, s ; e_{J}\right)}_{\text {exponentially small }}
$$

$s \rightarrow \mathcal{L}$ is cosine-like if it has (only) two critical points, a maximum and a minimum.
As $\mathcal{L}_{1}\left(\alpha, G, s ; e_{\jmath}\right)=\mathcal{L}_{1}^{*}\left(\alpha, G ; e_{\jmath}\right) \cos (s-\alpha-\theta)$, the critical point are solution of

$$
\begin{array}{r}
\frac{\partial \mathcal{L}}{\partial s}\left(\alpha, G, s ; e_{\jmath}\right)=-\mathcal{L}_{1}^{*}\left(\alpha, G ; e_{\jmath}\right) \sin (s-\alpha-\theta)+\frac{\partial \mathcal{L}_{\geq 2}}{\partial s}\left(\alpha, G, s ; e_{\jmath}\right)=0 \\
\Rightarrow \sin (s-\alpha-\theta)=\frac{1}{\mathcal{L}_{1}^{*}\left(\alpha, G ; e_{\jmath}\right)} \frac{\partial \mathcal{L}_{\geq 2}}{\partial s}\left(\alpha, G, s ; e_{\jmath}\right)
\end{array}
$$

This equation has two solutions in $[-\pi, 3 \pi / 2]$ except in a small neighborhood.

RPETBP

Different scattering maps

There are two solutions are

$$
s_{+}^{*}=\alpha+\theta+\phi \quad \text { and } \quad s_{-}^{*}=s_{+}^{*}+\pi
$$

for $\phi=\mathcal{O}\left(G^{-1 / 2} e^{-G^{3} / 3}\right)$
From these two critical points, it is defined two Reduced Poincaré functions:
$\mathcal{L}_{ \pm}^{*}\left(\alpha, G, e_{\jmath}\right)=\mathcal{L}_{0}\left(\alpha, G, e_{\jmath}\right) \pm+\mathcal{L}_{1}^{*}\left(\alpha, G, e_{J}\right)+\xi_{ \pm}\left(\alpha, G, e_{\jmath}\right)$.
To check that the scattering maps associated to $\mathcal{L}_{ \pm}^{*}$ are different, it is enough to check that the level curves of $\mathcal{L}_{ \pm}^{*}$ are transversal, or,

$$
\left\{\mathcal{L}_{+}^{*}, \mathcal{L}_{-}^{*}\right\} \neq 0 .
$$

- They are transversal in the region $G \geq C>32$ amd $e_{J} \leq c<1 / 8$ except for three curves.

At any point in the plane (α, G), we choose the scattering map that $\frac{d G}{d t}$ is larger.
By applying this methodology is possible to construct a pseudo-orbit that presents a displacement with $\mathcal{O}(1)$.

RPETBP

Strategy for diffusion

Fig. 3. Zone of diffusion: Level curves of $\mathcal{L}_{+}^{*}\left(\mathcal{L}_{-}^{*}\right)$ in blue (red) and diffusion trajectories in green (color figure online)

Thank you very much.
Tack så mycket.
Muchas gracias.
Muito obrigado.

Bibliography

A short bibliography

- Deslshams, Kaloshin, de la Rosa and Seara. Global Instability in the Restricted Planar Elliptic Three Body Problem. Communications in Mathematical Physics. 2019

