Lecture 4: Arnold Diffusion in Celestial Mechanics

Arnold Diffusion and applications

Rodrigo G. Schaefer

Department of Mathematics Uppsala Universitet

November 19th, 2020

UPPSALA UNIVERSITET

We will study the paper

Global Instability in the Restricted Planar Elliptic Three Body Problem

by Delshams, Kaloshin, de la Rosa and Seara.

э

イロト イヨト イヨト

Consider the motion of a massless (a comet) particle q under the attraction of two massive bodies q_S and q_J with masses $m_S = 1 - \mu$ and $m_J = \mu$, respectively, which move in elliptic orbits with eccentricity e_J around their center of mass.

 $q_{\rm S}$ and $q_{\rm J}$ are called primaries (Sun and Jupiter, respectively).

Denote by $G = q \times \dot{q}$ the angular momentum of the particle q, in the paper, the authors proved that there exist solution with a large variation (diffusion) of G.

Precisely, the following theorem:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Theorem

There exist two constants C > 0, c > 0 such that for any $0 < e_J < c/C$ there is $\mu^* = \mu^*(C, c, e_J) > 0$ such that for any $0 < \mu < \mu^*$ and any $C \le G_1^* < G_2^* \le c/e_J$ there exists a trajectory of the RPETBP such that $G(0) < G_1^*$, $G(T) > G_2^*$ for some T > 0.

From the gravitational Newton's law

$$rac{d^2 q}{dt^2} = (1-\mu) rac{q_{\mathsf{S}}-q}{\left|q_{\mathsf{S}}-q
ight|^3} + \mu rac{q_{\mathsf{J}}-q}{\left|q_{\mathsf{J}}-q
ight|^3}$$

By introduce p = dq/dt, we can rewrite as a 2 + 1/2 degrees of freedom Hamiltonian systems

$$H_{\mu}(q, p, t; e_{
m J}) = rac{p^2}{2} - U_{\mu}(q, t; e_{
m i}),$$

where

$$U_{\mu}(q,t;e_{\mathsf{J}})=rac{1-\mu}{|q-q_{\mathsf{S}}|}+rac{\mu}{|q-q_{\mathsf{J}}|}.$$

3

イロト イボト イヨト イヨト

By writing the system in polar coordinates:

$$q = \rho(\cos \alpha, \sin \alpha), \quad q_{\mathsf{S}} = \mu r(\cos f, \sin f), \quad q_{\mathsf{J}} = -(1 - \mu)r(\cos f, \sin f),$$

where r is the distance between the primary bodies and $f(t, e_J)$ is called the true anomaly, and more

$$r = \frac{1 - e_{\rm J}^2}{1 + e_{\rm J}\cos f}$$
 and $\frac{df}{dt} = \frac{(1 + e_{\rm J}\cos f)^2}{(1 - e_{\rm J})^{3/2}}$

In the new coordinates, the Hamiltonian takes the form

$$H^*_{\mu}(\rho,\alpha,y,G,t;e_{\mathsf{J}}) = \frac{y^2}{2} + \frac{G^2}{2\rho^2} - U^*_{\mu}(\rho,\alpha,t;e_{\mathsf{J}}),$$

where

$$U_{\mu}^{*} = \frac{1-\mu}{\sqrt{\rho^{2} - 2\mu r \rho \cos(\alpha - f) + \mu^{2} r^{2}}} + \frac{\mu}{\sqrt{\rho^{2} + 2(1-\mu)r\rho \cos(\alpha - f) + (1-\mu)^{2} r^{2}}}$$

For $e_J = 0$, r = 1 and $\frac{df}{dt} = 1$, then f = t. This is the circular case and by taking a new angle $\alpha - t$ we have that this is a 2 d.o.f Hamiltonian. (there is no diffusion).

RPETBP McGehee coordinates

To study the behavior of the solutions close to $\rho = \infty$, we use the non canonical McGehee coordinates

$$\rho = \frac{2}{x^2}.$$

The previous Hamiltonian becomes into

$$\mathcal{H}_{\mu}(x,\alpha,y,G,t;e_{\rm J}) = \frac{y^2}{2} + \frac{x^4G^2}{8} - \underbrace{\frac{x^2}{2}\left(\frac{1-\mu}{\sigma_{\rm S}} + \frac{\mu}{\sigma_{\rm J}}\right)}_{\mathcal{U}_{\mu}(x,\alpha,t,e_{\rm J}),}$$

where

•
$$\sigma_{\mathsf{S}}^2 = 1 - \mu r x^2 \cos(\alpha - f) + \frac{\mu^2 r^2 x^4}{4}$$

• $\sigma_{\mathsf{J}}^2 = 1 + (1 - \mu) r x^2 \cos(\alpha - f) + \frac{(1 - \mu)^2 r^2 x^4}{4}$

э

イロト イヨト イヨト

The differential equations in these coordinates we have

$dx _ x^3 \partial \mathcal{H}_{\mu}$	dy $-x^3 \left(\partial \mathcal{H}_{\mu} \right)$
$\frac{dt}{dt} = \frac{1}{4} \frac{\partial y}{\partial y}$	$\frac{dt}{dt} = \frac{1}{4} \left(\frac{-\frac{1}{\partial x}}{\partial x} \right)$
d $lpha \partial \mathcal{H}_{\mu}$	d ${\cal G}$ $\partial {\cal H}_{\mu}$
$\frac{dt}{dt} = \frac{d}{\partial G}$	$\overline{dt} = -\overline{\partial \alpha}.$

э

イロト イヨト イヨト

RPETBP The unperturbed case $(\mu = 0)$

For $\mu = 0$, the above system represents the Kepler problem.

$$\mathcal{H}_0(x,y,G) = rac{y^2}{2} + rac{x^4 G^2}{8} - rac{x^2}{2}$$

whith differential equations

$$\frac{dx}{dt} = \frac{-x^3 y}{4} \qquad \qquad \frac{dy}{dt} = \frac{G^2 x^6}{8} - \frac{x^4}{4}$$
$$\frac{d\alpha}{dt} = \frac{x^4 G}{4} \qquad \qquad \frac{dG}{dt} = 0.$$

- G is conserved.
- At (x, y) = (0, 0), α and G are constants
- Λ_{α,G} = {(0, α, 0, G)} is a parabolic equilibrium point (has the linear part equal to zero) and has 1D homoclinic invariant manifold γ_{α,G} = W^u(Λ_{α,G}) = W^s(Λ_{α,G})

RPETBP The unperturbed case ($\mu = 0$)

Rodrigo G. Schaefer (UU)

Arnold diffusion

11 / 23

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Then,

$$\Lambda_{\infty} = \bigcup_{\alpha, \mathcal{G}} \Lambda_{\alpha, \mathcal{G}}$$

is a 2D manifold of parabolic equilibrium points.

By extending the phase space (we can consider the time $s \in \mathbb{T}$ and ds/dt = 1):

$$\tilde{\Lambda}_{\infty} = \{ (\mathbf{0}, \alpha, \mathbf{0}, \mathbf{G}, \mathbf{s}) \in \mathbb{T} \times \mathbb{R}_{+} \times \mathbb{T} \} \quad (3\mathsf{D})$$

with invariant stable and unstable manifold given by

$$\begin{split} \tilde{\gamma} &= \bigcup_{\alpha,G} \tilde{\gamma}_{\alpha,G} = W^{\mathsf{u}}(\tilde{\Lambda}_{\infty}) = W^{\mathsf{s}}(\tilde{\Lambda}_{\infty}) \\ &= \{ (x, \alpha, y, G, s) : (\alpha, G, s) \in \mathbb{T} \times \mathbb{R}_{+} \times \mathbb{T}, \mathcal{H}_{0} = 0 \} \end{split}$$
(4D).

 $\Rightarrow \tilde{\Lambda}_{\infty} \text{ is Topologically equivalent to a Normally Invariant Manifold.}$ TNHIM.

Rodrigo G. Schaefer (UU)

RPETBP $\mu > 0$

For $\mu >$ 0, we can write \mathcal{H}_{μ} as

$$\mathcal{H}_{\mu}(x, \alpha, y, G, s; e_{J}) = \mathcal{H}_{0}(x, y, G) - \mu \Delta \mathcal{U}_{\mu}(x, \alpha, s; e_{J}),$$

where $\Delta U_{\mu}(x, \alpha, s; e_J) := U_{\mu}(x, \alpha, s; e_J) - x^2/2$.

Therefore, it is possible to study \mathcal{H}_{μ} as a perturbation of the Kepler problem ($\mu = 0$).

- $\tilde{\Lambda}_{\infty}$ remains invariant for $\mu > 0$ and all the periodic orbits $\tilde{\Lambda}_{\alpha,G}$ persist.
- The inner dynamics (the dynamics restricted to $\tilde{\Lambda}_{\infty}$) is trivial, since it consists of fixed points.Only the time varies.
- For $\mu \ll 1$, $W^{u}(\tilde{\Lambda}_{\infty})$ and $W^{s}(\tilde{\Lambda}_{\infty})$ exist, but they do not longer coincide.

The strategy in this case is very similar to the strategy applied in the last lecture's example, replacing the NHIM by TNHIM.

- To use the Melnikov Potential to find the transverse intersections between $W^{u}(\tilde{\Lambda}_{\infty})$ and $W^{s}(\tilde{\Lambda}_{\infty})$.
- To define at least two scattering maps by using the found intersections in the previous step.
- To combine them in order to obtain a pseudo-orbit that presents a diffusion on action variable *G*.
- To apply a suitable shadowing lemma to ensure the existence of a real orbit "close" to the pseudo-orbit.

Remark: As the inner dynamics are fixed points, they are not useful for diffusion paths. This is the reason that we have to combine different scattering maps.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Melnikov potential is

$$\mathcal{L}(\alpha, G, s; e_{\mathsf{J}}) = \int_{-\infty}^{\infty} \Delta \mathcal{U}_0(x_{\mathsf{h}}(t; G), \alpha_{\mathsf{h}}(t; \alpha, G), s+t; e_{\mathsf{J}}) dt,$$

where x_h, α_h are a parametrization of the homoclinic manifold ($\mu = 0$) and $\Delta U_0 = \lim_{\mu \to 0} \Delta U_{\mu}$

イロト イポト イヨト イヨト 三日

Proposition

Given $(\alpha, G, s) \in \mathbb{T} imes \mathbb{R}_+ imes \mathbb{T}$, assume that the function

$$au \in \mathbb{R} \to \mathcal{L}(\alpha, \mathbf{G}, \mathbf{s} - \tau; \mathbf{e}_{\mathsf{J}})$$

has a non-degenerate critical point $\tau^* = \tau^*(\alpha, G, s; e_J)$. Then, there exists $\mu^* = \mu^*(G, e_J)$, such that for $0 < \mu < \mu^*$, close to the point $\tilde{\mathbf{z}}_0^* \in \tilde{\gamma}$, there exists a locally unique point $\tilde{\mathbf{z}}^* \in W^u(\tilde{\Lambda}_\infty) \pitchfork W^s(\tilde{\Lambda}_\infty) \pitchfork N(\tilde{\mathbf{z}}_0^*)$ of the form

$$\tilde{\mathbf{z}}^* = \tilde{\mathbf{z}}_0^* + \mathcal{O}(\mu).$$

Also, there exist unique points $\tilde{\mathbf{x}}_{\pm} = (\mathbf{0}, \alpha_{\pm}, \mathbf{0}) = (\mathbf{0}, \alpha, \mathbf{0}, \mathbf{G}, \mathbf{s}) + \mathcal{O}(\mu) \in \tilde{\Lambda}_{\infty}$ such that

$$ilde{\phi}_{t,\mu}(ilde{z}^*) - ilde{\phi}_{t,\mu}(ilde{\mathbf{x}}_{\pm}) o \mathsf{0} \quad \textit{as} \quad t o \pm \infty.$$

The last property says that we can define a scattering map

 $\tilde{\mathbf{x}}_+ = S(\tilde{\mathbf{x}}_-)$

Once we have $\tau^*(\alpha, G, s; e_J)$, we can define the Reduced Poincaré function

$$\mathcal{L}^*(\alpha, G, e_{\mathsf{J}}) := \mathcal{L}(\alpha, G, s - \tau^*).$$

And the Scattering map formula is

$$\mathcal{S}_{\mu}(\alpha, \mathcal{G}, \mathbf{s}) = (\alpha - \mu \frac{\partial \mathcal{L}^{*}}{\partial \mathcal{G}}(\alpha, \mathcal{G}, \mathbf{e}_{\mathsf{J}}) + \mathcal{O}(\mu^{2}), \mathcal{G} + \mu \frac{\partial \mathcal{L}^{*}}{\partial \alpha}(\alpha, \mathcal{G}, \mathbf{e}_{\mathsf{J}}) + \mathcal{O}(\mu^{2}))$$

Remark: Note that from the second component of S_{μ} ,

$$\mathcal{G}_{+} - \mathcal{G}_{-} = \mu rac{\partial \mathcal{L}^{*}}{\partial lpha} (lpha, \mathcal{G}, \mathbf{e}_{\mathsf{J}}) + \mathcal{O}(\mu^{2})$$

After checking that is o possible to define a scattering map, the following steps are necessary:

- Calculate the Melnikov Potential. (Fourier Series)
- To check that two different scattering maps (\mathcal{L} is cosine-like + Poisson bracket)
- To construct a pseudo orbit and to apply shadow lemma.

RPETBP Computation of \mathcal{L}

The Melnikov Potential is

$$\begin{split} \mathcal{L}(\alpha, G, s; e_{J}) &= \\ \int_{-\infty}^{\infty} \left\{ \frac{x_{h}^{2}(t)}{\left[4 + x_{h}^{4}(t)r(t+s)^{2} + 4x_{h}^{2}(t)r(t+s)\cos(\alpha_{h}(t) - f(t+s))\right]^{1/2}} \\ &+ \left(\frac{x_{h}^{2}(t)}{2}\right)r(t+s)\cos(\alpha_{h}(t) - f(t+s)) - \frac{x_{h}(t)}{2}\right\}dt \end{split}$$

- *L* is computed via Fourier series on the angles α and s (This computation takes 30 pages!).
- \mathcal{L} is an even function on the angles variables, then it has a Fourier Cosine series.

$$\mathcal{L}(\alpha, G, s; e_J) = L_{00} + 2\sum_{k \ge 1} L_{0k} \cos(k\alpha) + 2\sum_{q \ge 1} \sum_{k \ge 1} L_{qk} \cos(qs + k\alpha).$$

Rodrigo G. Schaefer (UU)

RPETBP Cosine-like

For G > C for C large enough and $e_J G < c$ for c small enough

$$\mathcal{L}(\alpha, G, s; e_{J}) = \underbrace{\mathcal{L}_{0}(\alpha, G; e_{J}) + \mathcal{L}_{1}(\alpha, G, s; e_{J})}_{\mathcal{L} \ge 2} + \underbrace{\mathcal{L}_{\ge 2}(\alpha, G, s; e_{J})}_{\mathcal{L} \ge 2}$$

dominant part

exponentially small

 $s
ightarrow \mathcal{L}$ is cosine-like if it has (only) two critical points, a maximum and a minimum.

As $\mathcal{L}_1(\alpha, G, s; e_J) = \mathcal{L}_1^*(\alpha, G; e_J) \cos(s - \alpha - \theta)$, the critical point are solution of

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial s}(\alpha, G, s; e_J) &= -\mathcal{L}_1^*(\alpha, G; e_J) \sin(s - \alpha - \theta) + \frac{\partial \mathcal{L}_{\geq 2}}{\partial s}(\alpha, G, s; e_J) = 0\\ \Rightarrow \sin(s - \alpha - \theta) &= \frac{1}{\mathcal{L}_1^*(\alpha, G; e_J)} \frac{\partial \mathcal{L}_{\geq 2}}{\partial s}(\alpha, G, s; e_J) \end{aligned}$$

This equation has two solutions in $[-\pi, 3\pi/2]$ except in a small neighborhood.

Rodrigo G. Schaefer (UU)

There are two solutions are

$$s^*_+ = lpha + heta + \phi$$
 and $s^*_- = s^*_+ + \pi$,

for $\phi = \mathcal{O}(G^{-1/2}e^{-G^3/3})$

From these two critical points, it is defined two Reduced Poincaré functions:

$$\mathcal{L}_{\pm}^{*}(\alpha, G, e_{\mathsf{J}}) = \mathcal{L}_{0}(\alpha, G, e_{\mathsf{J}}) \pm + \mathcal{L}_{1}^{*}(\alpha, G, e_{\mathsf{J}}) + \xi_{\pm}(\alpha, G, e_{\mathsf{J}}).$$

To check that the scattering maps associated to \mathcal{L}^*_{\pm} are different, it is enough to check that the level curves of \mathcal{L}^*_{\pm} are transversal, or,

$$\left\{\mathcal{L}_{+}^{*},\mathcal{L}_{-}^{*}\right\} \neq 0.$$

They are transversal in the region G ≥ C > 32 amd e_J ≤ c < 1/8 except for three curves.

At any point in the plane (α, G) , we choose the scattering map that $\frac{dG}{dt}$ is larger.

By applying this methodology is possible to construct a pseudo-orbit that presents a displacement with O(1).

RPETBP Strategy for diffusion

Fig. 3. Zone of diffusion: Level curves of \mathcal{L}^*_+ (\mathcal{L}^*_-) in blue (red) and diffusion trajectories in green (color figure online)

Rodrigo G. Schaefer (UU)

Arnold diffusion

23 / 23

æ

・ロト ・四ト ・ヨト ・ヨト

Thank you very much.

Tack så mycket.

Muchas gracias.

Muito obrigado.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Deslshams, Kaloshin, de la Rosa and Seara. Global Instability in the Restricted Planar Elliptic Three Body Problem.*Communications in Mathematical Physics*.2019

э