
Lecture 4: Arnold Diffusion in Celestial Mechanics
Arnold Diffusion and applications

Rodrigo G. Schaefer

Department of Mathematics
Uppsala Universitet

November 19th, 2020



We will study the paper

Global Instability in the Restricted Planar Elliptic Three Body
Problem

by Delshams, Kaloshin, de la Rosa and Seara.
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RPETBP

Consider the motion of a massless (a comet) particle q under the
attraction of two massive bodies qS and qJ with masses mS = 1− µ and
mJ = µ, respectively, which move in elliptic orbits with eccentricity eJ
around their center of mass.

qS and qJ are called primaries (Sun and Jupiter,respectively).

Denote by G = q × q̇ the angular momentum of the particle q, in the
paper, the authors proved that there exist solution with a large variation
(diffusion) of G .

Precisely, the following theorem:
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RPETBP

Theorem

There exist two constants C > 0, c > 0 such that for any 0 < eJ < c/C
there is µ∗ = µ∗(C , c , eJ) > 0 such that for any 0 < µ < µ∗ and any
C ≤ G ∗1 < G ∗2 ≤ c/eJ there exists a trajectory of the RPETBP such that
G (0) < G ∗1 , G (T ) > G ∗2 for some T > 0.
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RPETBP Equations of motion

From the gravitational Newton’s law

d2q

dt2
= (1− µ)

qS − q

|qS − q|3
+ µ

qJ − q

|qJ − q|3

By introduce p = dq/dt, we can rewrite as a 2 + 1/2 degrees of freedom
Hamiltonian systems

Hµ(q, p, t; eJ) =
p2

2
− Uµ(q, t; ei),

where

Uµ(q, t; eJ) =
1− µ
|q − qS|

+
µ

|q − qJ|
.
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RPETBP In polar coordinates

By writing the system in polar coordinates:

q = ρ(cosα, sinα), qS = µr(cos f , sin f ), qJ = −(1− µ)r(cos f , sin f ),

where r is the distance between the primary bodies and f (t, eJ) is called
the true anomaly, and more

r =
1− e2J

1 + eJ cos f
and

df

dt
=

(1 + eJ cos f )2

(1− eJ)3/2
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RPETBP In polar coordinates

In the new coordinates, the Hamiltonian takes the form

H∗µ(ρ, α, y ,G , t; eJ) =
y2

2
+

G 2

2ρ2
− U∗µ(ρ, α, t; eJ),

where

U∗µ =
1− µ√

ρ2 − 2µrρ cos(α− f ) + µ2r2

+
µ√

ρ2 + 2(1− µ)rρ cos(α− f ) + (1− µ)2r2

For eJ = 0, r = 1 and df
dt = 1, then f = t. This is the circular case and by

taking a new angle α− t we have that this is a 2 d.o.f Hamiltonian. (there
is no diffusion).
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RPETBP McGehee coordinates

To study the behavior of the solutions close to ρ =∞, we use the non
canonical McGehee coordinates

ρ =
2

x2
.

The previous Hamiltonian becomes into

Hµ(x , α, y ,G , t; eJ) =
y2

2
+

x4G 2

8
− x2

2

(
1− µ
σS

+
µ

σJ

)
︸ ︷︷ ︸
Uµ(x , α, t, eJ),

where

σ2S = 1− µrx2 cos(α− f ) + µ2r2x4

4

σ2J = 1 + (1− µ)rx2 cos(α− f ) + (1−µ)2r2x4
4
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RPETBP McGehee coordinates

The differential equations in these coordinates we have

dx

dt
= −x3

4

∂Hµ
∂y

dy

dt
=
−x3

4

(
−∂Hµ
∂x

)
dα

dt
=
∂Hµ
∂G

dG

dt
= −∂Hµ

∂α
.
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RPETBP The unperturbed case (µ = 0)

For µ = 0 , the above system represents the Kepler problem.

H0(x , y ,G ) =
y2

2
+

x4G 2

8
− x2

2

whith differential equations

dx

dt
=
−x3y

4

dy

dt
=

G 2x6

8
− x4

4
dα

dt
=

x4G

4

dG

dt
= 0.

G is conserved.

At (x , y) = (0, 0), α and G are constants

Λα,G = {(0, α, 0,G )} is a parabolic equilibrium point (has the linear
part equal to zero) and has 1D homoclinic invariant manifold
γα,G = W u(Λα,G ) = W s(Λα,G )
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RPETBP The unperturbed case (µ = 0)
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RPETBP The unperturbed case (µ = 0)

Then,
Λ∞ =

⋃
α,G

Λα,G

is a 2D manifold of parabolic equilibrium points.

By extending the phase space (we can consider the time s ∈ T and
ds/dt = 1):

Λ̃∞ = {(0, α, 0,G , s) ∈ T× R+ × T} (3D)

with invariant stable and unstable manifold given by

γ̃ =
⋃
α,G

γ̃α,G = W u(Λ̃∞) = W s(Λ̃∞)

= {(x , α, y ,G , s) : (α,G , s) ∈ T× R+ × T,H0 = 0} (4D).

⇒ Λ̃∞ is Topologically equivalent to a Normally Invariant Manifold.
TNHIM.
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RPETBP µ > 0

For µ > 0, we can write Hµ as

Hµ(x , α, y ,G , s; eJ) = H0(x , y ,G )− µ∆Uµ(x , α, s; eJ),

where ∆Uµ(x , α, s; eJ) := Uµ(x , α, s; eJ)− x2/2.

Therefore, it is possible to study Hµ as a perturbation of the Kepler
problem (µ = 0).

Λ̃∞ remains invariant for µ > 0 and all the periodic orbits Λ̃α,G
persist.

The inner dynamics (the dynamics restricted to Λ̃∞) is trivial, since it
consists of fixed points.Only the time varies.

For µ� 1, W u(Λ̃∞) and W s(Λ̃∞) exist, but they do not longer
coincide.
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RPETBP Strategy for µ > 0

The strategy in this case is very similar to the strategy applied in the last
lecture’s example, replacing the NHIM by TNHIM.

To use the Melnikov Potential to find the transverse intersections
between W u(Λ̃∞) and W s(Λ̃∞).

To define at least two scattering maps by using the found
intersections in the previous step.

To combine them in order to obtain a pseudo-orbit that presents a
diffusion on action variable G .

To apply a suitable shadowing lemma to ensure the existence of a real
orbit “close” to the pseudo-orbit.

Remark: As the inner dynamics are fixed points, they are not useful for
diffusion paths. This is the reason that we have to combine different
scattering maps.
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RPETBP Melnikov Potential

The Melnikov potential is

L(α,G , s; eJ) =

∫ ∞
−∞

∆U0(xh(t;G ), αh(t;α,G ), s + t; eJ)dt,

where xh, αh are a parametrization of the homoclinic manifold (µ = 0) and
∆U0 = lim

µ→0
∆Uµ
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RPETBP Melnikov Potential

Proposition

Given (α,G , s) ∈ T× R+ × T, assume that the function

τ ∈ R→ L(α,G , s − τ ; eJ)

has a non-degenerate critical point τ∗ = τ∗(α,G , s; eJ). Then, there exists
µ∗ = µ∗(G , eJ), such that for 0 < µ < µ∗,close to the point z̃∗0 ∈ γ̃ , there
exists a locally unique point z̃∗ ∈W u(Λ̃∞) t W s(Λ̃∞) t N(z̃∗0) of the form

z̃∗ = z̃∗0 +O(µ).

Also, there exist unique points
x̃± = (0, α±, 0) = (0, α, 0,G , s) +O(µ) ∈ Λ̃∞ such that

φ̃t,µ(z̃∗)− φ̃t,µ(x̃±)→ 0 as t → ±∞.
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RPETBP Scattering map

The last property says that we can define a scattering map

x̃+ = S(x̃−)

Once we have τ∗(α,G , s; eJ), we can define the Reduced Poincaré function

L∗(α,G , eJ) := L(α,G , s − τ∗).

And the Scattering map formula is

Sµ(α,G , s) = (α−µ∂L
∗

∂G
(α,G , eJ) +O(µ2),G +µ

∂L∗

∂α
(α,G , eJ) +O(µ2))

Remark: Note that from the second component of Sµ,

G+ − G− = µ
∂L∗

∂α
(α,G , eJ) +O(µ2)
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RPETBP Construction of pseudo-orbits

After checking that is o possible to define a scattering map, the following
steps are necessary:

Calculate the Melnikov Potential. (Fourier Series)

To check that two different scattering maps (L is cosine-like +
Poisson bracket )

To construct a pseudo orbit and to apply shadow lemma.
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RPETBP Computation of L

The Melnikov Potential is

L(α,G , s; eJ) =∫ ∞
−∞

{
x2h (t)[

4 + x4h (t)r(t + s)2 + 4x2h (t)r(t + s) cos(αh(t)− f (t + s))
]1/2

+

(
x2h (t)

2

)
r(t + s) cos(αh(t)− f (t + s))− xh(t)

2

}
dt

L is computed via Fourier series on the angles α and s (This
computation takes 30 pages!).

L is an even function on the angles variables, then it has a Fourier
Cosine series.

L(α,G , s; eJ) = L00 + 2
∑
k≥1

L0k cos(kα) + 2
∑
q≥1

∑
k≥1

Lqk cos(qs + kα).
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RPETBP Cosine-like

For G > C for C large enough and eJG < c for c small enough

L(α,G , s; eJ) =L0(α,G ; eJ) + L1(α,G , s; eJ)︸ ︷︷ ︸+L≥2(α,G , s; eJ)︸ ︷︷ ︸
dominant part exponentially small

s → L is cosine-like if it has (only) two critical points, a maximum and a
minimum.
As L1(α,G , s; eJ) = L∗1(α,G ; eJ) cos(s − α− θ), the critical point are
solution of

∂L
∂s

(α,G , s; eJ) = −L∗1(α,G ; eJ) sin(s − α− θ) +
∂L≥2
∂s

(α,G , s; eJ) = 0

⇒ sin(s − α− θ) =
1

L∗1(α,G ; eJ)

∂L≥2
∂s

(α,G , s; eJ)

This equation has two solutions in [−π, 3π/2] except in a small
neighborhood.
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RPETBP Different scattering maps

There are two solutions are

s∗+ = α + θ + φ and s∗− = s∗+ + π,

for φ = O(G−1/2e−G
3/3)

From these two critical points, it is defined two Reduced Poincaré
functions:
L∗±(α,G , eJ) = L0(α,G , eJ)±+L∗1(α,G , eJ) + ξ±(α,G , eJ).

To check that the scattering maps associated to L∗± are different, it is
enough to check that the level curves of L∗± are transversal, or,{

L∗+,L∗−
}
6= 0.

They are transversal in the region G ≥ C > 32 amd eJ ≤ c < 1/8
except for three curves.
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RPETBP Strategy for diffusion

At any point in the plane (α,G ), we choose the scattering map that dG
dt is

larger.
By applying this methodology is possible to construct a pseudo-orbit that
presents a displacement with O(1).
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RPETBP Strategy for diffusion
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Thank you very much.

Tack s̊a mycket.

Muchas gracias.

Muito obrigado.
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