Lecture 3: Scattering map

Arnold Diffusion and applications

Rodrigo G. Schaefer

Department of Mathematics Uppsala Universitet

November 18th, 2020

UPPSALA UNIVERSITET

(日) (四) (문) (문) (문)

э

・ロト ・四ト ・ヨト ・ヨト

We consider a 2π -periodic in time perturbation of a pendulum and a rotor described by the non-autonomous Hamiltonian,

$$\begin{aligned} H_{\varepsilon}(p,q,l,\varphi,t) &= H_{0}(p,q,l) + \varepsilon h(p,q,l,\varphi,t;\varepsilon) \\ &= P_{\pm}(p,q) + \frac{1}{2}l^{2} + \varepsilon h(p,q,l,\varphi,t;\varepsilon) \end{aligned}$$
 (1)

where $(p,q,l,arphi,t)\in (\mathbb{R} imes\mathbb{T})^2 imes\mathbb{T}$ and

$$P_{\pm}(p,q) = \pm \left(\frac{1}{2}p^2 + V(q)\right) \tag{2}$$

and V(q) is a 2π -periodic function. We will refer to $P_{\pm}(p,q)$ as the *pendulum*.

Note. This model just comes from a normal form around a single resonance of a nearly integrable Hamiltonian. The perturbation is arbitrary.

Theorem (Delshams-Llave-Seara06)

Consider the Hamiltonian (1) where V and h are uniformly C^{r+2} for $r \ge r_0$, sufficiently large. Assume also that

- **H1** The potential $V : \mathbb{T} \to \mathbb{R}$ has a unique global maximum at q = 0 which is non-degenerate. Denote by $(q_0(t), p_0(t))$ an orbit of the pendulum $P_{\pm}(p, q)$ homoclinic to (0, 0).
- **H2** The Melnikov potential, associated to h (and to the homoclinic orbit (p_0, q_0)):

$$\mathcal{L}(I,\varphi,s) = -\int_{-\infty}^{+\infty} (h(p_0(\sigma),q_0(\sigma),I,\varphi+I\sigma,s+\sigma;0)) -h(0,0,I,\varphi+I\sigma,s+\sigma;0))d\sigma$$
(3)

satisfies concrete non-degeneracy conditions.

H3 The perturbation term h satisfies concrete non-degeneracy conditions.

Then, there is $\varepsilon^* > 0$ such that for $0 < \varepsilon < \varepsilon^*$, and for any interval $[I_-^*, I_+^*]$, there exists a trajectory $\widetilde{x}(t)$ of the system (1) such that for some T > 0,

 $I(\widetilde{x}(0)) \leq I_{-}^{*}; \qquad I(\widetilde{x}(T)) \geq I_{+}^{*}.$

Remark Arbitrary excursions in the I variable can also be realized.

Rodrigo G. Schaefer (UU)

Hypotheses H1, H2 and H3 are C^2 generic, so, the following short version of the Theorem also holds:

Theorem (Delshams-Huguet09)

Consider the Hamiltonian (1) and assume that V and h are C^{r+2} functions which are C^2 generic, with $r > r_0$, large enough. Then there is $\varepsilon^* > 0$ such that for $0 < |\varepsilon| < \varepsilon^*$ and for any interval $[I_-^*, I_+^*]$, there exists a trajectory $\tilde{x}(t)$ of the system with Hamiltonian (1) such that for some T > 0

$$I(\widetilde{x}(0)) \leq I_{-}^{*}; \qquad I(\widetilde{x}(T)) \geq I_{+}^{*}.$$

Remark A (non optimal) value of r_0 which follows from our argument is $r_0 = 242$.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

A priori unstable systems

The main idea of the proof is to use the two (or more) dynamics on $\tilde{\Lambda}$.

- Find a big invariant saddle object: a NHIM (normally hyperbolic invariant manifold: a global version of a center manifold) Λ with transverse associated stable and unstable manifolds along some homoclinic manifold Γ: W^u(Λ) h_Γ W^s(Λ).
- Compute the invariant objects (typically tori \mathcal{T}) which may prevent instability for the inner dynamics of the NHIM.
- Compute an scattering map S = S^Γ : H_− ⊂ Λ̃ → H₊ ⊂ Λ̃ on the NHIM associated to Γ and consider it as an outer dynamics on the NHIM (a second dynamics on Γ).
- Check that $S(\mathcal{T}_{l_i}) \pitchfork \mathcal{T}_{l_{i+1}}$ for a sequence of tori $\{\mathcal{T}_{l_i}\}_{i=1}^N$ with $|I_N I_1| = \mathcal{O}(1)$, and construct a transition chain of whiskered tori, i.e. $\mathcal{W}^u(\mathcal{T}_{l_i}) \pitchfork \mathcal{W}^s(\mathcal{T}_{l_{i+1}})$.
- Standard shadowing methods provide an orbit that follows closely the transition chain.

Rodrigo G. Schaefer (UU)

A concrete example The result

Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables (φ, s) :

$$H_{\varepsilon}(p,q,l,\varphi,t) = \pm \left(rac{p^2}{2} + \cos q - 1
ight) + rac{l^2}{2} + \varepsilon h(q,\varphi,s)$$
 (4)

$$h(q,\varphi,s) = f(q)g(\varphi,s),$$

$$f(q) = \cos q, \qquad g(\varphi,s) = a_1 \cos \varphi + a_2 \cos s.$$
(5)

Theorem

Assume that $a_1a_2 \neq 0$ in (4)-(5). Then, for any $I^* > 0$, there exists $\varepsilon^* = \varepsilon^*(I^*, a_1, a_2) > 0$ such that for any ε , $0 < \varepsilon < \varepsilon^*$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some T > 0

$$I(0) \leq -I^* < I^* \leq I(T).$$

< ロ > < 同 > < 回 > < 回 > < □ > <

We have two important dynamics associated to the system: the inner and the outer dynamics.

$$\widetilde{\Lambda} = \{ (0,0,I,arphi, s); I \in [-I^*,I^*], (arphi, s) \in \mathbb{T}^2 \}.$$

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated 4D stable $W^{s}_{\varepsilon}(\widetilde{\Lambda})$ and unstable $W^{u}_{\varepsilon}(\widetilde{\Lambda})$ invariant manifolds.

- The *inner dynamics* is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The *outer dynamics* is the dynamics restricted to its invariant manifolds. (Scattering map)

Remark: for simplicity, in our case $\widetilde{\Lambda} = \widetilde{\Lambda}_{\varepsilon}$.

・ロト ・四ト ・ヨト ・

A concrete example

Scattering map

Let Λ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ . A scattering map is a map S defined by $S(\tilde{x}_{-}) = \tilde{x}_{+}$ if there exists $\tilde{z} \in \Gamma$ satisfying

$$|\phi_t^{\varepsilon}(ilde{z}) - \phi_t^{\varepsilon}(ilde{x}_{\mp})| \longrightarrow 0 \text{ as } t \longrightarrow \mp \infty$$

that is, $W^{u}_{\varepsilon}(\tilde{x}_{-})$ intersects transversally $W^{s}_{\varepsilon}(\tilde{x}_{+})$ in \tilde{z} .

S is symplectic and exact (Delshams -de la Llave - Seara 2008) and takes the form:

$$\mathcal{S}_{arepsilon}(I,arphi,oldsymbol{s}) = \left(I + arepsilon rac{\partial \mathcal{L}^*}{\partial heta}(I, heta) + \mathcal{O}(arepsilon^2), heta - arepsilon rac{\partial \mathcal{L}^*}{\partial I}(I, heta) + \mathcal{O}(arepsilon^2), oldsymbol{s}
ight),$$

where $\theta = \varphi - Is$ and $\mathcal{L}^*(I, \theta)$ is the Reduced Poincaré function, or more simply in the variables (I, θ) :

$$\mathcal{S}_{\varepsilon}(I, heta) = \left(I + arepsilon rac{\partial \mathcal{L}^*}{\partial heta}(I, heta) + \mathcal{O}(arepsilon^2), heta - arepsilon rac{\partial \mathcal{L}^*}{\partial I}(I, heta) + \mathcal{O}(arepsilon^2)
ight),$$

- The variable s remains fixed under S_{ε} : it plays the role of a parameter
- Up to first order in ε , S_{ε} is the $-\varepsilon$ -time flow of the Hamiltonian $\mathcal{L}^*(I, \theta)$
- The scattering map jumps O(ε) distances along the level curves of L^{*}(I, θ)

イロト 不得 トイヨト イヨト 二日

イロト イポト イヨト イヨト 三日

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\varepsilon}$

Proposition

Given $(I, arphi, s) \in [-I^*, I^*] imes \mathbb{T}^2$, assume that the real function

$$au \, \in \, \mathbb{R} \, \longmapsto \, \mathcal{L}(I, arphi - I \, au, s - au) \, \in \, \mathbb{R}$$

has a non degenerate critical point $au^* = au(I, arphi, s)$, where $\mathcal{L}(I, arphi, s) =$

$$\int_{-\infty}^{+\infty} h(p_0(\sigma), q_0(\sigma), I, \varphi + I\sigma, s + \sigma; 0) - h(0, 0, I, \varphi + I\sigma, s + \sigma; 0) d\sigma.$$

Then, for $0 < |\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\tilde{\lambda}_{\varepsilon}$, which is ε -close to the point $\tilde{z}^*(I, \varphi, s) = (p_0(\tau^*), q_0(\tau^*), I, \varphi, s) \in W^0(\tilde{\lambda})$:

$$ilde{z} = ilde{z}(I, arphi, s) = (p_0(au^*) + O(arepsilon), q_0(au^*) + O(arepsilon), I, arphi, s) \in W^u(\widetilde{\Lambda}_{arepsilon}) \pitchfork W^s(\widetilde{\Lambda}_{arepsilon}).$$

 $\mathcal{L}(I, \varphi, s)$ and $\mathcal{L}^*(I, \theta)$

In our model the perturbation is

$$h(p,q,I,\varphi,s) = \cos q (a_1 \cos \varphi + a_2 \cos s)$$

and the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,s) = A_1(I)\cos(k_1\varphi + l_1s) + A_2\cos(k_2\varphi + l_2s),$$

where
$$A_1(I) = \frac{2 \pi I a_1}{\sinh(\frac{I \pi}{2})}$$
 and $A_2 = \frac{2 \pi a_2}{\sinh(\frac{\pi}{2})}$.

Definition

The Reduced Poincaré function is

$$\mathcal{L}^*(I, \theta) = \mathcal{L}(I, \varphi - I \tau^*(I, \varphi, s), s - \tau^*(I, \varphi, s)),$$

where $\theta = \varphi - I s$.

э

イロト イボト イヨト イヨト

A concrete example

Plot of $\mathcal{L}(I, \varphi, s)$

Figure: The Melnikov Potential, $\mu = a_1/a_2 = 0.6$, I = 1.

14 / 28

æ

・ロト ・四ト ・ヨト ・ヨト

We look for
$$au^*$$
 such that $rac{\partial \mathcal{L}}{\partial au}(I, arphi - I \, au^*, s - au^*) = 0.$

Different view-points for $au^* = au^*(I, arphi, s)$

- Look for critical points of \mathcal{L} on the straight line $R(I, \varphi, s) = \{(\varphi I\tau, s \tau), \tau \in \mathbb{R}\}.$
- Look for intersections between R(I, φ, s) = {(φ − I τ, s − τ), τ ∈ ℝ} and a crest which is a curve of equation

$$\frac{\partial \mathcal{L}}{\partial \tau} (I, \varphi - I\tau, s - \tau)|_{\tau=0} = 0.$$

Definition - Crests (Delshams-Huguet 2011)

For each I, we call crest C(I) the set of curves in the variables (φ, s) of equation

$$I\frac{\partial \mathcal{L}}{\partial \varphi}(I,\varphi,s) + \frac{\partial \mathcal{L}}{\partial s}(I,\varphi,s) = 0.$$
(6)

which in our case can be rewritten as

$$\mu\alpha(I)\sin\varphi + \sin s = 0, \qquad \text{with } \alpha(I) = \frac{\sinh(\frac{\pi}{2})I^2}{\sinh(\frac{\pi I}{2})}, \quad \mu = \frac{a_{10}}{a_{01}}.$$
 (7)

- For any *I*, the critical points of the Melnikov potential *L*(*I*, ·, ·) ((0, 0), (0, π), (π, 0) and (π, π): one maximum, one minimum point and two saddle points) always belong to the crest *C*(*I*).
- $\mathcal{L}^*(I, \theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta = \varphi Is$ is constant on the straight line $R(I, \varphi, s)$

イロト イポト イヨト イヨト 三日

Geometry of a crest

Figure: Level curves of \mathcal{L} for $\mu = a_1/a_2 = 0.5$, I = 1.2.

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Understanding the behavior of the crests $$\downarrow$$ Understanding the behavior of the Reduced Poincaré function $$\downarrow$$ Understanding the Scattering map

∃ ► < ∃ ►</p>

Highways

Definition: Highways

Highways are the level curves of \mathcal{L}^* such that

$$\mathcal{L}^*(I,\theta) = rac{2\pi a_1}{\sinh(\pi/2)}.$$

- The highways are "vertical" in the variables (φ, s)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu = a_1/a_2$)
- The highways give rise to fast diffusing pseudo-orbits

A concrete example

Plot of highways

Figure: The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^*(I, \theta)$

э

A B M A B M

A concrete example $0 < |\mu| < 0.97$

• For $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{M,m}(I)$ parameterized by:

$$s = \xi_M(I, \varphi) = -\arcsin(\mu\alpha(I)\sin\varphi) \mod 2\pi$$

$$\xi_m(I, \varphi) = \arcsin(\mu\alpha(I)\sin\varphi) + \pi \mod 2\pi$$
(8)

They are "horizontal" crests

∃ ► < ∃ ►</p>

A concrete example $0 < |\mu| < 0.625$

- For each *I*, the line *R*(*I*, φ, s) and the crest C_{M,m}(*I*) have only one intersection point.
- The scattering map S_M associated to the intersections between C_M(I) and R(I, φ, s) is well defined for any φ ∈ T. Analogously for S_m, changing M to m. In the variables (I, θ = φ − Is), both scattering maps S_M, S_m are globally well defined.

< ロ > < 同 > < 回 > < 回 > < □ > <

A concrete example

 $0.625 < |\mu|$

- There are tangencies between C_{M,m}(I, φ) and R(I, φ, s). For some value of (I, φ, s), there are 3 points in R(I, φ, s) ∩ C_{M,m}(I).
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

∃ ► < ∃ ►</p>

A concrete example

 $0.625 < |\mu|$

(d) Zoom where the scattering maps are different

イロト イボト イヨト イヨト

Figure: Level curves of
$$\mathcal{L}^*_M(I, heta)$$
, $\mathcal{L}^{*(1)}_M(I, heta)$ and $\mathcal{L}^{*(2)}_M(I, heta)$

24 / 28

э

A concrete example $0.97 < |\mu|$

• For some values of I, $|\mu\alpha(I)| > 1$, the two crests $C_{M,m}$ are parameterized by:

$$\varphi = \eta_M(I, s) = -\arcsin(\mu\alpha(I)\sin s) \mod 2\pi$$

$$\eta_m(I, s) = \arcsin(\mu\alpha(I)\sin s) + \pi \mod 2\pi$$
(9)

They are "vertical" crests

Rodrigo G. Schaefer (UU)

Arnold diffusion

25 / 28

▶ ∢ ⊒ ▶

For the values of *I* and when horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

Figure: The level curves of $\mathcal{L}^*_{\mathsf{M}}(I,\theta)$, $\mu = 1.5$.

In green, the region where the scattering map $S_{\rm M}$ is not defined.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Figure: In red: Inner map, blue: Scattering map, black: Highways

A concrete example Time of diffusion

An estimate of the total time of diffusion between $-I^*$ and I^* , along the highway, is

$$T_{\rm d} = rac{T_{
m s}}{arepsilon} \left[2 \log \left(rac{C}{arepsilon}
ight) + \mathcal{O}(arepsilon^b)
ight], ext{ for } arepsilon o 0, ext{ where } 0 < b < 1.$$

with

$$T_{\rm s} = T_{\rm s}(I^*, a_1, a_2) = \int_0^{I^*} \frac{-\sinh(\pi I/2)}{\pi a_{10}I \sin\psi_{\rm h}(I)} dI,$$

where $\psi_h = \theta - I \tau^*(I, \theta)$ is the parameterization of the highway $\mathcal{L}^*(I, \psi_h) = A_2$, and

$$C = C(I^*, a_1, a_2) = 16 |a_1| \left(1 + \frac{1.465}{\sqrt{1 - \mu^2 A^2}}\right)$$

where $A = \max_{I \in [0, I^*]} \alpha(I)$, with $\alpha(I) = \frac{\sinh(\frac{\pi}{2})I^2}{\sinh(\frac{\pi I}{2})}$ and $\mu = a_1/a_2$. Note: This estimate quantifies the general optimal diffusion estimate $\mathcal{O}\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$ of

[Berti-Biasco-Bolle 2003], [Cresson-Guillet 2003] and [Treschev 2004].

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q C

Thank you very much.

Tack så mycket.

Muchas gracias.

Muito obrigado.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Deslshams and Schaefer. Arnold Diffusion for a Complete Family of Perturbations. *Regular and Chaotics Dynamics*.2017.

э