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Last session

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

Hε(ϕ, I ) = h(I ) + εf (ϕ, I , t). (1)

For ε = 0,

İ =
∂h

∂ϕ
= 0⇒ I = constant.

There exists a global instability in the action variable I if for a ε 6= 0, there
exists an orbit of the system such that

4I := |I (T )− I (0)| = O(1).

This instability is also called Arnold diffusion.
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Last session Isoenergetic version

Theorem (Arnold 63)

Suppose that the invariant torus NI0 of the unperturbed system lies on the
energy {H0 = h}, the unperturbed system is isoenergetically
nondegenerate at I0:

det

(
∂2H0
∂I 2

(I0) ω(I0)
ω(I0)T 0

)
6= 0, (2)

and the frequencies ω(I0) are Diophantine. Then on the energy level
{H = h} of the perturbed system there is an invariant torus close to the
original one. The frequencies on this torus are λω(I0), where λ = 1 +O(ε).
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Last session Two degrees of freedom

For a Hamiltonian Hε(ϕ, I ) with two degrees of freedom, that is,
(ϕ, I ) ∈ T2 × G ⊂ R2, we have the following theorem due to Arnold:

Theorem

In an isoenergetically non-degenerate system with two degrees of freedom,
for all initial conditions, the action variables remain forever near their
initial values.
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Poincaré-Arnold-Melnikov

2 Arnold’s example
Limitations
Arnold’s conjecture

3 Nekhoroshev theorem
For the Arnold’s example

4 Arnold diffusion

5 Research in Arnold diffusion

Rodrigo G. Schaefer (UU) Arnold diffusion 5 / 25



Resonances

For a nearly-integrable Hamiltonian with n degrees of freedom

Hε(ϕ, I ) = h(I ) + εf (ϕ, I ), (ϕ, I ) ∈ Tn × Rn,

we have studied the effect of a small perturbation on non-resonant
(Diophantine) tori via KAM theorem.

Now, we are going to study on a neighborhood of a resonant torus.
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Resonances Single resonance normal form

Rewrite the Hε as

Hε(ϕ, I ) = h(I ) + εf (ϕ, I ), (ϕ, I ) ∈ Tm+1 × Rm+1,

where m + 1 = n.
Assume that the unperturbed Hamiltonian h has a single resonance at
I = I ∗.
Then, there exists a k ∈ Zm+1 such that 〈ω(I ∗), k〉 = 0.
From the fact that it is single, any other k ′ satisfying such equality
belongs to 〈k〉.

From a result of Abelian group theory, there is a change in the angle
variables such that

ω(I ∗) = (0, ω∗),

where ω∗ ∈ Rm and it is non-resonant.
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Resonances Single resonance normal form

By expanding in Taylor series, and assuming I ∗ = 0, the unperturbed
Hamiltonian h can be written as

h(I ) = 〈ω(0), I 〉+
1

2

〈
∂2I h(0)I , I

〉
+ O3(I ),

Replace ϕ→ (q, ϕ) and I → (p, I ) and

∂ 2
p,Ih(0) =

(
β2 λ>

λ ∂2I h(0)

)
,

where we have put β2 > 0 in order to fix ideas, λ ∈ Rn . We will assume
β = 1; this can be achieved replacing p, I by p/β, I/β (changing in this
way the time scale by a factor β), and rewriting ω∗/β, λ/β2, ∂2I h(0)/β2

as ω∗, λ, Q respectively, and redefining also the function f .
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Resonances Single resonance normal form

Therefore, now, our Hamiltonian Hε is

Hε(q, p, ϕ, I ) = h(p, I ) + εf (q, p, ϕ, I ),

where

h(p, I ) = 〈ω∗, I 〉+
p2

2
+ 〈λ, I 〉 p +

1

2
〈QI , I 〉+ O3(p, I ).

Now, it is performed a Normal form via Lie Series Method (For details see
Delshams-Gutierrez 96):
Then we have to look for functions S(q, ϕ) and R(q, p, ϕ, I ) = O(p, I )
such that

{S , h}+ V + R = f , (3)

where V (q) is the periodic function obtained by averaging f (q, 0, ϕ, 0)
with respect to the angles ϕ:

V (q) = f (q, 0, ·, 0) =
1

(2π)n

∫
Tn

f (q, 0, ϕ, 0)dϕ, q ∈ T.
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Resonances Implementing one step

The time-1 symplectic flow Φ of the generating Hamiltonian εS leads to

H ◦ Φ = H + {H, εS}+ O
(
ε2
)

= h + ε(V + R) + O
(
ε2
)

= H0 + H1,

with

H0(q, p, I ; ε) = 〈ω∗, I 〉+
p2

2
+ εV (q) + 〈λ, I 〉 p +

1

2
〈QI , I 〉 ,

H1(q, p, ϕ, I ; ε) = εR(q, p, ϕ, I ) + O3(p, I ) + O
(
ε2
)
.

with H0 playing the role of the integrable Hamiltonian and H1 being the
perturbation.
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Resonances Hyperbolicity

We can assume that V (q) has unique and non-degenerated maximum at
q0. Then, for ε > 0, the 1-degree-of-freedom Hamiltonian

P(q, p; ε) =
p2

2
+ εV (q),

has a hyperbolic point in (q0, 0), with homoclinic separatrices.
Then, the Hamiltonian H0 has whiskered tori with coincident whiskers
associated to this saddle point.
For ε < 0 the same happens,but V has a minimum instead of a maximum.
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Resonances Introducing µ =
√
ε

The Lyapunov exponents of the saddle point of the “pendulum” P are
±
√
εα, which tend to zero for ε→ 0+.

To have fixed Lyapunov exponents, we can replace p, I by
√
εp,
√
εI .

The new system is still Hamiltonian if we divide the Hamiltonian by ε
(making in this way a change of time scale by a factor

√
ε):

H0 = 〈ω, I 〉+
p2

2
+ V (q) + 〈λ, I 〉 p +

1

2
〈QI , I 〉 , (4)

H1 = R
(
x ,
√
εy , ϕ,

√
εI
)

+
1

ε
O3

(√
εy ,
√
εI
)

+ O (ε) = O(µ), (5)

where

ω =
ω∗√
ε
, µ =

√
ε.
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Resonances Poincaré-Arnold-Melnikov

This strategy of keeping ε > 0 fixed and letting µ→ 0 was introduced by
Poincaré in 1889 and followed in Arnold’s example to avoid dealing with a
singular perturbation problem.

Unfortunately, the exponentially small splitting of separatrices predicted by
a direct application of the Poincaré-Arnold-Melnikov (PMA) method

Splitting distance = ε PMA prediction + O(εµ)

when the PMA prediction = O
(
e−c/ε

a)
could then be justified only for µ

exponentially small in ε.
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Arnold’s example

In 1964, V.I. Arnold proposed an example of a nearly-integrable
Hamiltonian with 2 + 1/2 degreees of freedom

Hε(q, p, ϕ, I , t) =
1

2

(
p2 + I 2

)
+ ε(cos q − 1) (1 + µ(sinϕ+ cos t)) ,

and asserted that given any δ,K > 0, for any 0 < µ� ε� 0, there exists
a trajectory of this Hamiltonian system such that

I (0) < δ and I (T ) > K for some time T > 0.

Notice that this a global instability result for the variable I , since

İ = −∂Hε
∂ϕ

= −εµ(cos q − 1) cosϕ

is zero for ε = 0, so I remains constant, whereas I can have a drift of
finite size for any ε > 0 small enough.
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Arnold’s example

Note this Hamiltonian Hε can be written as

Hε(q, p, ϕ, I , s) = h(q, p, I ; ε) + µf (q, φ, s; ε),

where h is the integrable Hamiltonian (Pendulum + rotor):

h(q, p, I ) =
p2

2
+ ε(cos q − 1) +

I 2

2

And a perturbation in µ:

f (q, ϕ, s; ε) = ε cos(q − 1)(sinϕ+ s)
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Arnold’s example

By assuming µ = 0, we have the following phase space

Therefore, we have the presence of 2D tori

Tω =
{

(0, 0, ϕ, ω, s) : (ϕ, s) ∈ T2
}

And, associated to each tori above, we have the 3D invariant (homoclinic)
manifold

W sTω = W uTω = {(q0(
√
ετ),
√
εp0(
√
ετ), I , ϕ, s) : τ ∈ R, (ϕ, s) ∈ T2}
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Arnold’s example

Now, we consider < µ� ε. By the special form of f , we have that Tω
persist. But, their W uT µω and W sT µω do not coincide and intersect
transversally.

More, for close enough tori, we have W uT µωi t W sT µωi+1 . Therefore, we
can construct a sequence of tori Tω1 ,Tω2 ,...,Tωm , this sequence is called a
transition chain. It possible to ensure by shadow result that there is a
solution that travel along this chain.
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Arnold’s example Limitations

The perturbation maintains fixed all the invariant tori Tω. In general, there
appear gaps around resonant tori (rational I ) which prevent
W s T̃ εωi

t W uT̃ εωi+1
because T̃ εωi

and T̃ εIi+1
are too far.

Arnold example only shows global instability along a single resonance,
where the associated normal form is integrable, but does not deal with
multiple resonances, where the normal form is not integrable.
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Arnold’s example Arnold’s conjecture

Arnold conjectured Hamiltonian systems with three or more degrees of
freedom are generically unstable.
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Nekhoroshev theorem

Numerical experiments the the behavior of the diffusing orbits are similar
to random walks.

Nekhoroshev proved, in 1977, that for generic systems diffusion happens
exponentially slowly.

Theorem (Nekhoroshev theorem)

If the unperturbed Hamiltonian h(I ) is a steepa function, then there exist
a, b, c such that in the perturbed Hamiltonian system for a sufficiently
small perturbation we have

|I (t)− I (0)| ≤ εb for |t| ≤ (1/ε) exp
{(

c−1/εa
)}
.

aAn analytic function is said to be steep if it has no stationary points and its
restriction to any plane of any dimension has only isolated stationary points

The constants a, b and c are positive. a and b are called stability
exponents.
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Nekhoroshev theorem

If h is quasiconvex, that is, for any I ∈ G and v ∈ Rn,

Dh(I )v = 0 and v 6= 0 =⇒ v>D2h(I )v 6= 0.

a = b = 1
2n .

This theorem establishes Effective stability for all the trajectories of a
steep nearly-integrable system
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Nekhoroshev theorem For the Arnold’s example

For the Anorld’s example, we have that the unperturbed Hamiltonian can
be written as

h(p, I ,A) =
1

2

(
p2 + I 2

)
+ A,

This Hamiltonian h is quasiconvex, then, by the Nekhoroshev theorem,

|(p, I ,A)(t)− (p, I ,A)(0)| ≤ ε1/6 for |t| ≤ (1/ε) exp
{

(ε0/ε)1/6
}
.

Indeed, by [Pöschel93, Delshams-Gutiérrez96] for orbits close to the single
resonance p = 0, using resonant normal forms, gives

a = b = 1/4.
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Arnold diffusion

Although Arnold diffusion is an expected phenomenon, from the obstacles
generated by the KAM tori, the complexity of the dynamics close to
resonances, and to be a slow process, the diffusion is not easy to detect
theoretically neither numerically.

There are different approaches developed to detect this it: Variational (ex.
Mather’s set) and Geoemtrical (ex. scattering and separatrix map)
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Arnold diffusion

The Arnold diffusion is discussed in the possible scenarios [Chierchia and
Gallovotti 94]:

a priori stable Hamiltonian
In this case, we have that the unperturbed Hamiltonian h has no
hyperbolicity.

a priori unstable Hamiltonian
The unperturbed has a family of hyperbolic tori. This model is
usually represented by a Pendulum + rotor system.

a priori chaotic Hamiltonian
The unperturbed Hamiltonian is not completely integrable. In general
is related to geodesic flows.
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Research in Arnold diffusion

Here, we have some examples of topics with active research

Find explicit conditions, on h and εf , of generic type that the
diffusion happens.(Arnold’s conjecture)

Different mechanisms of diffusion that cover the limitation of other
ones.

Example of systems that we can detect diffusion.

Statistical properties of diffusing orbits and stochastic behavior of
them

Description of concrete diffusing orbits.

Estimates of diffusing time and to find optimal diffusing orbits.
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Thank you very much.

Tack s̊a mycket.

Muchas gracias.

Muito obrigado.
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