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Introduction Motivation

From Poincaré’s point of view, the stability of the solar system was a
fundamental problem of dynamics and the efforts towards a solution
contributed to the development of the Dynamical Systems Theory.
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Introduction Motivation

From Poincaré’s point of view, the stability of the solar system was a
fundamental problem of dynamics and the efforts towards a solution
contributed to the development of the Dynamical Systems Theory.

Nowadays, this kind of problem can be described by a nearly integrable
Hamiltonian system associated to

Hε(ϕ, I ) = H0(I ) + εH1(ϕ, I ), (ϕ, I ) ∈ Tn × Rn

with equations

ϕ̇ =
∂Hε
∂I

İ = −∂Hε
∂ϕ

,

and one wishes to understand the long term behavior of this system.

Rodrigo G. Schaefer (UU) Arnold diffusion 4 / 28



Introduction Motivation

In general, the applications can be divided into two types of interest,
stability and instability when ε 6= 0.

Rodrigo G. Schaefer (UU) Arnold diffusion 5 / 28



Introduction Motivation

In general, the applications can be divided into two types of interest,
stability and instability when ε 6= 0.

Stability: the problems concern about the region of the phase space
where there exists stability or to look for conditions of stability for
solutions. They are usually associated to the KAM theory

Rodrigo G. Schaefer (UU) Arnold diffusion 5 / 28



Introduction Motivation

In general, the applications can be divided into two types of interest,
stability and instability when ε 6= 0.

Stability: the problems concern about the region of the phase space
where there exists stability or to look for conditions of stability for
solutions. They are usually associated to the KAM theory

Instability:, the main question is to figure out how small forces
produce large effects, or for instance, in a system in action-angle
variables the existence of orbits whose actions change widely.
Introduced by Arnold, this global instability is called Arnold diffusion.
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What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

Hε(ϕ, I ) = h(I ) + εf (ϕ, I , t). (1)

For ε = 0,

İ =
∂h

∂ϕ
= 0⇒ I = constant.

There exists a global instability in the action variable I if for a ε 6= 0, there
exists an orbit of the system such that

4I := |I (T )− I (0)| = O(1).
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Introduction Motivation

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

Hε(ϕ, I ) = h(I ) + εf (ϕ, I , t). (1)

For ε = 0,

İ =
∂h

∂ϕ
= 0⇒ I = constant.

There exists a global instability in the action variable I if for a ε 6= 0, there
exists an orbit of the system such that

4I := |I (T )− I (0)| = O(1).

This instability is also called Arnold diffusion.
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Nearly-integrable Hamiltonian

A nearly-integrable Hamiltonian in action-angle variables can be written in
the form

Hε(ϕ, I ) = h(I ) + εf (ϕ, I ), (2)

where ϕ = (ϕ1, . . . , ϕn) ∈ Tn, I = (I1, . . . , In) ∈ G ⊂ Rn, ε is a small
perturbation parameter, h is an integrable Hamiltonian. Then the
Hamiltonian equations are

ϕ̇ = ω(I ) + ε∂I f (ϕ, I ), İ = −ε∂ϕf (ϕ, I ).
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Nearly-integrable Hamiltonian The unperturbed part

The associated Hamiltonian equations for an unperturbed trajectory
(ϕ(t), I (t)) are

ϕ̇ = ω(I ), İ = 0,

where ω = ∂Ih. Hence the dynamics is very simple: every n-dimensional
torus I = constant is invariant, with linear flow

ϕ(t) = ϕ(0) + ω(I )t,

and thus all trajectories are stable. The motion on a torus is called
quasiperiodic, with associated frequencies given by the vector

ω(I ) = (ω1(I ), . . . , ωn(I )).
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Nearly-integrable Hamiltonian Invariant tori

The torus
NI0 = {(ϕ, I ) : I = I0, ϕ ∈ Tn}

which lies a solution can be classified in the following ways:
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Nearly-integrable Hamiltonian Invariant tori

The torus
NI0 = {(ϕ, I ) : I = I0, ϕ ∈ Tn}

which lies a solution can be classified in the following ways:

Non-resonant if

〈ω(I0), k〉 6= 0, ∀k ∈ Zn \ {0} ;

Resonant otherwise.

A non-resonant torus is densely filled by any of its trajectories. On the
other hand, a resonant torus is foliated into a family of lower dimensional
tori.
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Nearly-integrable Hamiltonian Invariant tori

Figure: Non-resonant 2D Torus
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Nearly-integrable Hamiltonian Diophantine tori

A frequency (of the unperturbed system) ω(I ) is Diophantine if there exist
positive constants c and γ such that

|〈k, ω(I )〉| ≥ 1

c ‖k‖γ

for any nonzero vector k ∈ Zn.

An invariant torus NI0 is Diophantine if ω(I0) is Diophantine.

Remark: A Diophantine torus is non-resonant.
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KAM theory Non-degeneracy condition

In general lines, the KAM theory states that the most orbits lie on
n-dimensional torus under a suitable non-degeneracy condition in ω and
for a “small” perturbation εf .
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In general lines, the KAM theory states that the most orbits lie on
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for a “small” perturbation εf .

We have two main non-degeneracy conditions:

Standard condition:

det

(
∂ω

∂I

)
6= 0

The non-resonant tori form an everywhere set of full measure. The
resonant tori is also dense everywhere but has measure zero.
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KAM theory Non-degeneracy condition

In general lines, the KAM theory states that the most orbits lie on
n-dimensional torus under a suitable non-degeneracy condition in ω and
for a “small” perturbation εf .

We have two main non-degeneracy conditions:

Standard condition:

det

(
∂ω

∂I

)
6= 0

The non-resonant tori form an everywhere set of full measure. The
resonant tori is also dense everywhere but has measure zero.
Isoenergetic condition:

det

(
∂ω
∂I ω
ωT 0

)
6= 0.

Non-resonant and resonant tori are dense on each energy level. The
set of resonant tori has measure zero and the non-resonant has full
measure.
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KAM theory Non-degeneracy condition

These two conditions are independent:
Ex.

a) h(I ) = a1 log I1 + a2 log I2, where ai 6= 0 and a1 + a2 = 0. This

Hamiltonian satisfies the standard degeneracy condition but it is
isoenergetically degenerate.
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KAM theory Non-degeneracy condition

For this Hamiltonian, the vector frequency is ω(I ) = (a1/I1, a2/I2).
Therefore,

det

(
∂ω

∂I

)
= det

(
−a1/I 21 0

0 −a2/I 22

)
=

a1a2
I 21 I

2
2

6= 0.

On the other hand, for the isoenergetic non-degeneracy,

det

(
∂ω
∂I ω
ωT 0

)
= det

−a1/I 21 0 a1/I1
0 −a2/I 22 a2/I2

a1/I1 a2/I2 0

 =
a1a2(a1 + a2)

I 21 I
2
2

= 0.
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KAM theory Non-degeneracy condition

b) h = I1 + I 22 /2
This Hamiltonian is isoenergetically non-degenerated but (standard)
degenerate.
For this Hamiltonian, ω(I ) = (1, I2). Therefore

det

(
∂ω
∂I ω
ωT 0

)
= det

0 0 1
0 1 I2
1 I2 0

 = −1 6= 0.

For the standard condition

det

(
∂ω

∂I

)
= det

(
0 0
0 1

)
= 0.
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KAM theory Non-degeneracy condition

b) h = I1 + I 22 /2
This Hamiltonian is isoenergetically non-degenerated but (standard)
degenerate.
For this Hamiltonian, ω(I ) = (1, I2). Therefore

det

(
∂ω
∂I ω
ωT 0

)
= det

0 0 1
0 1 I2
1 I2 0

 = −1 6= 0.

For the standard condition

det

(
∂ω

∂I

)
= det

(
0 0
0 1

)
= 0.

It is possible to state a KAM theorem for each non-degeneracy condition:
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KAM theory Standard version

Theorem (Kolmogorov’s theorem)

Suppose that the unperturbed system is non-degenerate at the point I0:

∂2h

∂I 2
(I0) 6= 0,

and the torus NI0 is Diophantine. Then, NI0 survives the perturbation.It is
just slightly deformed and as before carries quasiperiodic motions with the
frequencies ω.
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KAM theory Standard version

Note that a preserved invariant torus have the same vector frequency ω(I0)
that the unperturbed torus.

On the other hand, they are not, necessarily, at the same energy level.

Ex. Consider
Hε(I ) = h(I ) + ε,

where h(I ) = a1 log I1 + a2 log I2, where ai 6= 0 and a1 + a2 = 0.
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KAM theory Standard version

Suppose that ω(I 1) = cω(I 0), where I = I 1 is a torus for the perturbed
Hamiltonian, I = I 0 is a torus for the unperturbed Hmamiltonian h, and
c > 0.
In coordinates, this implies I 11 =

I 01
c and I 12 =

I 02
c .

Therefore,

Hε(I
1) = h(I 1) + ε = a1 log I 11 + a2 log I 12

= a1 log(I 01 /c) + a2 log(I 02 /c) + ε

= a1 log I 01 + a2 log I 02 − log c (a1 + a2) + ε

= h(I 0) + ε 6= h(I 0)
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KAM theory Isoenergetic version

Theorem (Arnold 63)

Suppose that the invariant torus NI0 of the unperturbed system lies on the
energy {H0 = h}, the unperturbed system is isoenergetically
nondegenerate at I0:

det

(
∂2H0
∂I 2

(I0) ω(I0)
ω(I0)T 0

)
6= 0, (3)

and the frequencies ω(I0) are Diophantine. Then on the energy level
{H = h} of the perturbed system there is an invariant torus close to the
original one. The frequencies on this torus are λω(I0), where λ = 1 +O(ε).
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KAM theory Isoenergetic version

Note that condition (3) is equivalent that ω 6= 0 and

∂ω

∂I
(I0)v + λω(I0) 6= 0, ∀v ∈ 〈w(I0)〉⊥ \ {0} , ∀λ ∈ R.

This can be interpreted as traversality between the level energy h−1(I0)
and ω(I0) · v = 0.
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KAM theory Isoenergetic version

In this case, the value of h at the unperturbed torus is the same for Hε at
the perturbed torus. But the frequency is not preserved.
Ex.

Hε(I ) = h(I ) + εI1,

where h = I1 + 1
2

n∑
i=2

I 2i .
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KAM theory Isoenergetic version

We have that the frequency for the unperturbed system for a torus I = I 0

is ω(I 0) = (1, I 02 , . . . , I
0
n ). In the perturbed case, torus I = I 0 has

frequency ω′(I 0) = (1 + ε, I 02 , . . . , I
0
n ).

Then, ω(I 0) 6= ω′(I 0). Note that ω(I 1) 6= ω′(I 0) for any I 1, I 0.
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KAM theory Two degrees of freedom

For a Hamiltonian Hε(ϕ, I ) with two degrees of freedom, that is,
(ϕ, I ) ∈ T2 × G ⊂ R2, we have the following theorem due to Arnold:

Theorem

In an isoenergetically non-degenerate system with two degrees of freedom,
for all initial conditions, the action variables remain forever near their
initial values.

Note that its phase space is four-dimensional. And, therefore energy levels
are three dimensional. Therefore a 2D torus on an energy level separates
such 3D is two. This implies that solutions between two torus are confined
by them.
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KAM theory Two degrees of freedom
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KAM theory Two degrees of freedom

Note that this implies that in such case the diffusion is not possible.

This result is not true for the standard non-degeneracy condition.
Ex. Consider the Hamiltonian

Hε(ϕ, I ) =

(
I 21 − I 22

)
2

+ ε sin (ϕ1 − ϕ2)
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KAM theory Two degrees of freedom

The frequency vector is ω(I ) = (I1,−I2) for the unperturbed case, then

det

(
∂ω

∂I

)
= det

(
1 0
0 −1

)
= −1 6= 0.

Note that I1 = −εt, I2 = εt, ϕ1 = −εt2/2, and ϕ2 = −εt2/2 is a solution.
And it is easy to check that |I (T )− 0| = O(1) for some T .
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KAM theory Orbits between KAM tori

For more degrees of freedom, such stability cannot be ensured under any
non-degeneracy condition.
In particular, for 6 degrees of freedom, a 3D KAM invariant tori do not
separate the 5D energy level as before, there can exist irregular orbits
‘traveling’ between tori.
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KAM theory Orbits between KAM tori

Anyway, the isoenergetically non-degeneracy seems to be a stronger barrier
to Arnold diffusion than others.

Other reason for the interest in this kind of non-degeneracy is the fact that
it can eventually be applied to periodic non-autonomous Hamiltonian. The
basic idea is to add an extra action variable conjugated to the time.

Note that we did not comment what happens for resonant tori. They are
lower dimensional tori with stable and unstable manifolds. They can be
responsible for generating hyperbolicity in the system that is useful for the
construction of transition chains. Due to this unstable and stable
manifold, they are called whiskered tori.
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Thank you very much.

Tack s̊a mycket.

Muchas gracias.

Muito obrigado.
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