Global instability in Hamiltonian systems II BGSMath Junior Meeting Barcelona, May 13 ${ }^{\text {th }}$, 2016

Rodrigo Gonçalves Schaefer
Director: Amadeu Delshams

Departament de Matemàtica Aplicada
Universitat Politècnica de Catalunya

May $13^{\text {th }}, 2016$

We consider the following a priori unstable Hamiltonian with $2+\frac{1}{2}$ degrees of freedom with 2π-periodic time dependence: $H_{\varepsilon}(p, q, I, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{I^{2}}{2}+\varepsilon \cos q\left(a_{00}+a_{10} \cos \varphi+a_{01} \cos s\right)$,
where $p, I \in \mathbb{R}, q, \varphi, s \in \mathbb{T}$ and ε is small enough.

In the unperturbed case, that is, $\varepsilon=0$, the Hamiltonian H_{0} is integrable (represents the standard pendulum plus a rotor):

$$
H_{0}(p, q, I, \varphi, s)=\frac{p^{2}}{2}+\cos q-1+\frac{I^{2}}{2}
$$

with associated equations:

$$
\begin{array}{rlrl}
\dot{q}=\frac{\partial H_{0}}{\partial p}=p & \dot{p}=-\frac{\partial H_{0}}{\partial q}=\sin q \tag{1}\\
\dot{\varphi}=\frac{\partial H_{0}}{\partial I}=I & \dot{I}=-\frac{\partial H_{0}}{\partial \varphi}=0 \\
\dot{s} & =1 &
\end{array}
$$

and associated flow

$$
\phi_{t}(p, q, I, \varphi, s)=(p(t), q(t), I, I t+\varphi, t+s) .
$$

I is constant.

Arnold diffusion

We have the following result:

Theorem

Consider a Hamiltonian of the form
$H_{\varepsilon}(p, q, I, \varphi, t)=\frac{p^{2}}{2}+\cos q-1+\frac{I^{2}}{2}+\varepsilon f(q) g(\varphi, t)$, where $f(q)=\cos q$ and $g(\varphi, t)=a_{00}+a_{10} \cos \varphi+a_{01} \cos t$. Assume that

$$
a_{10} a_{01} \neq 0
$$

Then, for any $I^{*}>0$, there exists $0<\varepsilon^{*}=\varepsilon^{*}\left(I^{*}\right) \ll 1$ such that for any $\varepsilon, 0<\varepsilon<\varepsilon^{*}$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some $T>0$

$$
I(0) \leq-I^{*}<I^{*} \leq I(T)
$$

We consider $\triangle I=\mathcal{O}(1)$, at least. This is an example of Arnold diffusion.

What makes this happen?

We have two important dynamics associated to the system: the inner and the outer dynamics.

$$
\widetilde{\Lambda}=\left\{\tau_{I}^{0}\right\}_{I \in\left[-I^{*}, I^{*}\right]}=\left\{(0,0, I, \varphi, s) ; I \in\left[-I^{*}, I^{*}\right],(\varphi, s) \in \mathbb{T}^{2}\right\}
$$

is a Normally Hyperbolic Invariant Manifold (NHIM)

- The inner is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The outer is the dynamics restricted to its invariant manifolds. (Scattering map)

Inner and outer dynamics

The unperturbed case, $\varepsilon=0$

Inner

Outer

- Stable and unstable manifolds are coincident.
- The outer dynamics is the identity.

The perturbed case, $\varepsilon \neq 0$:

Inner

Outer

(a) Inner

(b) Outer

- Stable and unstable manifolds, in general, are not coincident.
- The outer dynamics ensures the growth of I, that is, the Arnold diffusion.

Outer dynamics: Scattering maps

Let $\widetilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ. A scattering map is a map S defined by $S\left(\tilde{x}_{-}\right)=\tilde{x}_{+}$if there exists $\tilde{z} \in \Gamma$ satisfying

$$
\begin{aligned}
& \left|\phi_{t}^{\varepsilon}(\tilde{z})-\phi_{t}^{\varepsilon}\left(\tilde{x}_{-}\right)\right| \longrightarrow 0 \text { as } t \longrightarrow-\infty \\
& \left|\phi_{t}^{\varepsilon_{t}}(\tilde{z})-\phi_{t}^{\varepsilon}\left(\tilde{x}_{+}\right)\right| \longrightarrow 0 \text { as } t \longrightarrow+\infty,
\end{aligned}
$$

that is, $W_{\varepsilon}^{u}\left(\tilde{x}_{-}\right)$intersects transversally $W_{\varepsilon}^{s}\left(\tilde{x}_{+}\right)$in \tilde{z}.

$S(I, \varphi, s)$ is symplectic and exact (Delshams -de la Llave - Seara 2000), this implies that S takes the form:

$$
S_{\varepsilon}(I, \varphi, s)=\left(I+\varepsilon \frac{\partial L^{*}}{\partial \varphi}(I, \varphi, s)+\mathcal{O}\left(\varepsilon^{2}\right), \varphi-\varepsilon \frac{\partial L^{*}}{\partial I}(I, \varphi, s)+\mathcal{O}\left(\varepsilon^{2}\right), s\right),
$$

or simply

$$
\mathcal{S}_{\varepsilon}(I, \theta)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right)\right),
$$

where $\theta=\varphi-I s$ and $\mathcal{L}^{*}(I, \theta)$ is the Reduced Poincaré function.
So, our focus will be the level curves of $\mathcal{L}^{*}(I, \theta)$.
Remark: The variable s remains fixed under the action of the Scattering map, or plays the role of a parameter.

Effectively, how does it ensure the Arnold diffusion?

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct a composition of Scattering map and Inner map. This composition is called a pseudo-orbit.
- To use previous results about Shadowing (Gidea-de la Llave Seara 2014) for ensuring the existence of a real orbit close to our pseudo-orbit.

Is there the BEST pseudo-orbit?

Recall:

- Our perturbation is $\varepsilon \cos q\left(a_{00}+a_{10} \cos \varphi+a_{01} \cos s\right)$.
- the only hypothesis about it is $a_{10} a_{01} \neq 0$.

We have special curves, we called them Highways. In concrete, they are the level curves of \mathcal{L}^{*} such that

$$
\mathcal{L}^{*}(I, \theta)=4 a_{00}+\frac{2 \pi a_{01}}{\sinh (\pi / 2)}
$$

Why are they special? Because highways are "vertical"

We define $\mu=\frac{a_{10}}{a_{01}}$. Highways are defined in the following regions in the action I :

- for $|\mu|<0.625: I \in(-\infty,+\infty)$
- for $0.625 \leq|\mu| \leq 1:\left(-\infty,-I_{++}\right) \cup\left(-I_{+}, I_{+}\right) \cup\left(I_{++},+\infty\right)$, where

$$
I_{+}=\min \left\{I>0: \frac{I^{3} \sinh (\pi / 2)}{\sinh (I \pi / 2)}=\frac{1}{|\mu|}\right\}
$$

and

$$
I_{++}=\max \left\{I>0: \frac{I^{3} \sinh (\pi / 2)}{\sinh (I \pi / 2)}=\frac{1}{|\mu|}\right\}
$$

- for $|\mu| \geq 1:\left(-\infty,-I_{++}\right) \cup\left(-I_{+}, I_{+}\right) \cup\left(I_{++},+\infty\right)$, where

$$
I_{+}=\min \left\{I>0: \frac{I^{2} \sinh (\pi / 2)}{\sinh (I \pi / 2)}=\frac{1}{|\mu|}\right\}
$$

and

$$
I_{++}=\max \left\{I>0: \frac{I^{3} \sinh (\pi / 2)}{\sinh (I \pi / 2)}=\frac{1}{|\mu|}\right\}
$$

- We always have a "pair" of highways. One goes up, the other goes down (this depends on signal of μ.)
- It is easy to construct pseudo-orbits where highways are defined.

What is the Reduced Poincaré function?

Note that for scattering maps we have to look for homoclinic points. We will use the Melnikov Potential:

Proposition

Given $(I, \varphi, s) \in\left[-I^{*}, I^{*}\right] \times \mathbb{T}^{2}$, assume that the real function

$$
\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi-I \tau, s-\tau) \in \mathbb{R}
$$

has a non degenerate critical point $\tau^{*}=\tau(I, \varphi, s)$, where $\mathcal{L}(I, \varphi, s)=$

$$
\int_{-\infty}^{+\infty} h\left(p_{0}(\sigma), q_{0}(\sigma), I, \varphi+I \sigma, s+\sigma ; 0\right)-h(0,0, I, \varphi+I \sigma, s+\sigma ; 0) d \sigma
$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε-close to the point
$\tilde{z}^{*}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right), q_{0}\left(\tau^{*}\right), I, \varphi, s\right) \in W^{0}(\widetilde{\Lambda}):$
$\tilde{z}=\tilde{z}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right)+O(\varepsilon), q_{0}\left(\tau^{*}\right)+O(\varepsilon), I, \varphi, s\right) \in W^{u}\left(\widetilde{\Lambda}_{\varepsilon}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{\varepsilon}\right)$.

In our model, $h(p, q, I, \varphi, s)=\cos q\left(a_{0} 0+a_{01} \cos \varphi+a_{01} \cos s\right)$.

- \mathcal{L} is the Melnikov potential.
- In our case

$$
\begin{equation*}
\mathcal{L}(I, \varphi, s)=A_{00}+A_{10}(I) \cos \varphi+A_{01} \cos s \tag{2}
\end{equation*}
$$

where $A_{00}=4 a_{00}, A_{10}(I)=\frac{2 \pi I a_{10}}{\sinh \left(\frac{I \pi}{2}\right)}$ and $A_{01}=\frac{2 \pi a_{01}}{\sinh \left(\frac{\pi}{2}\right)}$.

- We look for τ^{*} such that

$$
\frac{\partial \mathcal{L}}{\partial \tau}\left(I, \varphi-I \tau^{*}, s-\tau^{*}\right)=0
$$

In our case, we look for τ^{*} such that:

$$
\begin{equation*}
I A_{10}(I) \sin \left(\varphi-I \tau^{*}\right)+A_{10} \sin \left(s-\tau^{*}\right)=0 \tag{3}
\end{equation*}
$$

We define the Reduced Poincaré functions as

$$
\mathcal{L}^{*}(I, \theta)=\mathcal{L}\left(I, \varphi-I \tau^{*}(I, \varphi, s), s-\tau^{*}(I, \varphi, s)\right)
$$

where $\theta=\varphi-I s$.

- It is evaluated on the critical points of \mathcal{L} on the straight line $R(I, \varphi, s)=\{(\varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$. Besides θ is constant on the straight line.
- From another view-point, it is evaluated on the intersection between $R(I, \varphi, s)=\{(\varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$ and the curve of equation

$$
I A_{10}(I) \sin \varphi+A_{01} \sin s=0
$$

Crests

Definition - Crests (Delshams-Huguet 2011)

For each I, we call crests the pair (φ, s) such that $\tau^{*}=0$ satisfies the equation (3), that is,

$$
\begin{equation*}
I A_{10}(I) \sin \varphi+A_{01} \sin s=0 \tag{4}
\end{equation*}
$$

For the computation of the reduced Poincaré function, we have to study this equation. We can rewrite it as

$$
\begin{equation*}
\mu \alpha(I) \sin \varphi+\sin s=0, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(I)=\frac{\sinh \left(\frac{\pi}{2}\right) I^{2}}{\sinh \left(\frac{\pi I}{2}\right)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=\frac{a_{10}}{a_{01}} . \tag{7}
\end{equation*}
$$

$0<|\mu|<0.97$

- $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by:

$$
\begin{array}{rlrc}
s=\xi_{M}(I, \varphi) & =-\arcsin (\alpha(I, \mu) \sin \varphi) & \bmod 2 \pi(8) \\
\xi_{m}(I, \varphi) & =\arcsin (\alpha(I, \mu) \sin \varphi)+\pi & \bmod 2 \pi
\end{array}
$$

They are the horizontal crests

$0<|\mu|<0.625$

- For each I, the line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ have only one intersection point.
- The intersection is always transversal.
- We have well defined S_{M} and S_{m}, where S_{M} is the scattering map associated to the intersections between $\mathcal{C}_{\mathrm{M}}(I)$ and $R(I, \varphi, s)$ and S_{m} is the scattering map associated to the intersection between $\mathcal{C}_{\mathrm{m}}(I)$ and $R(I, \varphi, s)$.

Figura: Level curve of \mathcal{L}^{*} associated to $\mathcal{C}_{\mathrm{M}}(I)$.

$0.625<|\mu|$

- The equations of the crests are the same.
- There are tangencies between $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I, \varphi)$ and $R(I, \varphi, s)$. If $\theta \neq \pi$, the tangency happens for two angles. In this case, for some value of (φ, s), there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$.
- The item above implies that there are three scattering maps associated to each crest. In this case we have Multiple Scattering maps.

We define as tangency locus the set

$$
\left\{(I, \theta) ; \frac{\partial \xi}{\partial \varphi}(I, \varphi)=\frac{1}{I}\right\} .
$$

- Out of the delimited region by the tangency locus: Scattering maps are equal.
- In this region, they are different.

(a) The three types of level curves.

(b) Zoom around the tangency locus

$|\mu|>0.97$

- For some values of $I,|\mu \alpha(I)|>1$, the two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}$ are parameterized by:

$$
\begin{array}{rlc}
\varphi=\eta_{M}(I, s) & =-\arcsin (\alpha(I, \mu) \sin s) & \bmod 2 \pi(9) \\
\eta_{m}(I, s) & =\arcsin (\alpha(I, \mu) \sin s)+\pi & \bmod 2 \pi
\end{array}
$$

They are the vertical crests

As this happens for some values of I and when it happens, we can look this crests locally as the horizontal crests, we restrict the domain of the Scattering map.

Figura: In green, the region where the scattering map is not defined.

Several Scattering maps

In this talk we have just displayed Scattering maps with $s=0$. But if we change its value in the formula

$$
S_{\varepsilon}(I, \varphi, s)=\left(I+\varepsilon \frac{\partial L^{*}}{\partial \varphi}(I, \varphi, s)+\mathcal{O}\left(\varepsilon^{2}\right), \varphi-\varepsilon \frac{\partial L^{*}}{\partial I}(I, \varphi, s)+\mathcal{O}\left(\varepsilon^{2}\right), s\right),
$$

we have more options for the diffusion, that is, the pseudo-orbit.

Figura: The level curves of the Reduced Poincaré function associated to $\mathcal{C}_{\mathrm{M}}(I)$ in blue, and associated to $\mathcal{C}_{\mathrm{m}}(I)$ in green, $s=\pi / 2$.

An estimate of the total time of diffusion between I_{0} and I_{f} along the highways is

$$
T_{d} \sim N_{\mathrm{s}} T_{\mathrm{h}}
$$

where

- $T_{\mathrm{h}}=\log \left(\frac{4\left(\left|a_{00}\right|+\left|a_{10}\right|+\left|a_{01}\right|\right)}{\varepsilon}\right)$ is the time along the homoclinic invariant manifold of $\widetilde{\Lambda}$
- $N_{\mathrm{s}}=T_{\mathrm{s}} / \varepsilon$ is the number of iterates of the scattering map along the highway and
- $T_{s}=\int_{I_{0}}^{I_{f}} \frac{-\sinh (I \pi / 2)}{2 \pi I a_{10} \sin \psi_{\mathrm{h}}(I)} d I$, where $\psi_{\mathrm{h}}=\theta-I \tau^{*}(I, \theta)$ is a parametrization of the highway.

This estimate agrees with the optimal estimate of (Berti-Biasco-Bolle 2003) and (Treschev 2004), that is, a time of the order $\mathcal{O}\left(\varepsilon^{-1} \log \varepsilon^{-1}\right)$.

Thank you for your attention.

A short bibliography

- A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems - (Delshams - Huguet 2011)
- A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of \mathbb{T}^{2} (Delshams - de la Llave -Seara 2000) (for Scattering maps)
- A general mechanism of diffusion in Hamiltonian systems: Qualitative results (Gidea - de la Llave - Seara 2014) (for Shadowing)
- Drift in phase space: a new variational mechanism with optimal diffusion time (Berti - Biasco - Bolle 2003)
- Evolution of slow variables in a priori unstable Hamiltonian systems (Treschev - 2004)

