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The system

We consider the following a priori unstable Hamiltonian with 2 + 1
2

degrees of freedom with 2π-periodic time dependence:

Hε(p, q, I, ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+
I2

2
+ε cos q (a00 + a10 cosϕ+ a01 cos s) ,

where p, I ∈ R, q, ϕ, s ∈ T and ε is small enough.
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In the unperturbed case, that is, ε = 0, the Hamiltonian H0 is
integrable (represents the standard pendulum plus a rotor):

H0(p, q, I, ϕ, s) =
p2

2
+ cos q − 1 +

I2

2
,

with associated equations:

q̇ =
∂H0

∂p
= p ṗ = −∂H0

∂q
= sin q (1)

ϕ̇ =
∂H0

∂I
= I İ = −∂H0

∂ϕ
= 0.

ṡ = 1.

and associated flow

φt(p, q, I, ϕ, s) = (p(t), q(t), I, It+ ϕ, t+ s) .

I is constant.
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Arnold diffusion

We have the following result:

Theorem

Consider a Hamiltonian of the form
Hε(p, q, I, ϕ, t) = p2

2 + cos q − 1 + I2

2 + ε f(q) g(ϕ, t), where
f(q) = cos q and g(ϕ, t) = a00 + a10 cosϕ+ a01 cos t. Assume
that

a10 a01 6= 0

Then, for any I∗ > 0, there exists 0 < ε∗ = ε∗(I∗) << 1 such that
for any ε, 0 < ε < ε∗, there exists a trajectory
(p(t), q(t), I(t), ϕ(t)) such that for some T > 0

I(0) ≤ −I∗ < I∗ ≤ I(T ).

We consider 4I = O(1), at least. This is an example of Arnold
diffusion.
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What makes this happen?

We have two important dynamics associated to the system: the
inner and the outer dynamics.

Λ̃ = {τ0I }I∈[−I∗,I∗] = {(0, 0, I, ϕ, s); I ∈ [−I∗, I∗] , (ϕ, s) ∈ T2}.

is a Normally Hyperbolic Invariant Manifold (NHIM)

The inner is the dynamics restricted to Λ̃. (Inner map)

The outer is the dynamics restricted to its invariant manifolds.
(Scattering map)
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Inner and outer dynamics

The unperturbed case, ε = 0

Stable and unstable manifolds are coincident.

The outer dynamics is the identity.
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The perturbed case, ε 6= 0:

(a) Inner (b) Outer

Stable and unstable manifolds, in general, are not coincident.

The outer dynamics ensures the growth of I, that is, the
Arnold diffusion.
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Outer dynamics: Scattering maps

Let Λ̃ be a NHIM with invariant manifolds intersecting
transversally along a homoclinic manifold Γ. A scattering map is a
map S defined by S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φεt (z̃)− φεt (x̃−)| −→ 0 as t −→ −∞
|φεt (z̃)− φεt (x̃+)| −→ 0 as t −→ +∞,

that is, W u
ε (x̃−) intersects transversally W s

ε (x̃+) in z̃.
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S(I, ϕ, s) is symplectic and exact (Delshams -de la Llave - Seara
2000), this implies that S takes the form:

Sε(I, ϕ, s) =

(
I + ε

∂L∗

∂ϕ
(I, ϕ, s) +O(ε2), ϕ− ε ∂L

∗

∂I
(I, ϕ, s) +O(ε2), s

)
,

or simply

Sε(I, θ) =

(
I + ε

∂L∗

∂θ
(I, θ) +O(ε2), θ − ε ∂L

∗

∂I
(I, θ) +O(ε2)

)
,

where θ = ϕ− Is and L∗(I, θ) is the Reduced Poincaré function.

So, our focus will be the level curves of L∗(I, θ).

Remark: The variable s remains fixed under the action of the
Scattering map, or plays the role of a parameter.
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Effectively, how does it ensure the Arnold diffusion?

Basically, we ensure the Arnold diffusion performing the following
scheme:

To construct a composition of Scattering map and Inner map.
This composition is called a pseudo-orbit.
To use previous results about Shadowing (Gidea-de la Llave -
Seara 2014) for ensuring the existence of a real orbit close to
our pseudo-orbit.
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Is there the BEST pseudo-orbit?

Recall:

Our perturbation is ε cos q (a00 + a10 cosϕ+ a01 cos s).

the only hypothesis about it is a10a01 6= 0.

We have special curves, we called them Highways. In concrete,
they are the level curves of L∗ such that

L∗(I, θ) = 4a00 +
2πa01

sinh(π/2)
.

Why are they special? Because highways are “vertical”
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We define µ = a10
a01

. Highways are defined in the following regions
in the action I:

for |µ| < 0.625: I ∈ (−∞,+∞)

for 0.625 ≤ |µ| ≤ 1: (−∞,−I++) ∪ (−I+, I+) ∪ (I++,+∞) , where

I+ = min

{
I > 0 :

I3 sinh(π/2)

sinh(Iπ/2)
=

1

|µ|

}
and

I++ = max

{
I > 0 :

I3 sinh(π/2)

sinh(Iπ/2)
=

1

|µ|

}
for |µ| ≥ 1:(−∞,−I++) ∪ (−I+, I+) ∪ (I++,+∞) , where

I+ = min

{
I > 0 :

I2 sinh(π/2)

sinh(Iπ/2)
=

1

|µ|

}
and

I++ = max

{
I > 0 :

I3 sinh(π/2)

sinh(Iπ/2)
=

1

|µ|

}
.
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We always have a “pair” of highways. One goes up, the other
goes down (this depends on signal of µ.)

It is easy to construct pseudo-orbits where highways are
defined.
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What is the Reduced Poincaré function?

Note that for scattering maps we have to look for homoclinic
points. We will use the Melnikov Potential:

Proposition

Given (I, ϕ, s) ∈ [−I∗, I∗] × T2, assume that the real function

τ ∈ R 7−→ L(I, ϕ− I τ, s− τ) ∈ R

has a non degenerate critical point τ∗ = τ(I, ϕ, s), where L(I, ϕ, s) =∫ +∞

−∞
h(p0(σ), q0(σ), I, ϕ+ Iσ, s+ σ; 0)− h(0, 0, I, ϕ+ Iσ, s+ σ; 0)dσ.

Then, for 0 < |ε| small enough, there exists a transversal homoclinic point z̃ to

Λ̃ε, which is ε-close to the point
z̃∗(I, ϕ, s) = (p0(τ∗), q0(τ∗), I, ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I, ϕ, s) = (p0(τ∗) +O(ε), q0(τ∗) +O(ε), I, ϕ, s) ∈ Wu(Λ̃ε) t W s(Λ̃ε).

In our model, h(p, q, I, ϕ, s) = cos q (a00 + a01 cosϕ+ a01 cos s).
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L is the Melnikov potential.

In our case

L(I, ϕ, s) = A00 +A10(I) cosϕ+A01 cos s, (2)

where A00 = 4 a00, A10(I) =
2π I a10

sinh( I π2 )
and A01 =

2π a01
sinh(π2 )

.

We look for τ∗ such that

∂L
∂τ

(I, ϕ− I τ∗, s− τ∗) = 0.

In our case, we look for τ∗ such that:

I A10(I) sin(ϕ− I τ∗) +A10 sin(s− τ∗) = 0. (3)

15 / ??



The Reduced Poincaré function

We define the Reduced Poincaré functions as

L∗(I, θ) = L(I, ϕ− I τ∗(I, ϕ, s), s− τ∗(I, ϕ, s)),

where θ = ϕ− I s.

It is evaluated on the critical points of L on the straight line
R(I, ϕ, s) = {(ϕ− I τ, s− τ), τ ∈ R}. Besides θ is constant
on the straight line.

From another view-point, it is evaluated on the intersection
between R(I, ϕ, s) = {(ϕ− I τ, s− τ), τ ∈ R} and the curve
of equation

I A10(I) sinϕ+A01 sin s = 0.

.
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Crests

Definition - Crests (Delshams-Huguet 2011)

For each I, we call crests the pair (ϕ, s) such that τ∗ = 0 satisfies
the equation (3), that is,

I A10(I) sinϕ+A01 sin s = 0. (4)

For the computation of the reduced Poincaré function, we have to
study this equation. We can rewrite it as

µα(I) sinϕ+ sin s = 0, (5)

where

α(I) =
sinh(π2 ) I2

sinh(π I2 )
(6)

and
µ =

a10
a01

. (7)
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0 < |µ| < 0.97

|µα(I)| < 1, there are two crests CM,m(I) parameterized by:

s = ξM (I, ϕ) = − arcsin(α(I, µ) sinϕ) mod 2π (8)

ξm(I, ϕ) = arcsin(α(I, µ) sinϕ) + π mod 2π

They are the horizontal crests
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0 < |µ| < 0.625

For each I, the line R(I, ϕ, s) and the crest CM,m(I) have
only one intersection point.
The intersection is always transversal.
We have well defined SM and Sm, where SM is the scattering
map associated to the intersections between CM(I) and
R(I, ϕ, s) and Sm is the scattering map associated to the
intersection between Cm(I) and R(I, ϕ, s).

Figura: Level curve of L∗ associated to CM(I).
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0.625 < |µ|

The equations of the crests are the same.
There are tangencies between CM,m(I, ϕ) and R(I, ϕ, s). If
θ 6= π, the tangency happens for two angles. In this case, for
some value of (ϕ, s), there are 3 points in
R(I, ϕ, s) ∩ CM,m(I).
The item above implies that there are three scattering maps
associated to each crest. In this case we have Multiple
Scattering maps.
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We define as tangency locus the set{
(I, θ);

∂ξ

∂ϕ
(I, ϕ) =

1

I

}
.

Out of the delimited region by the tangency locus: Scattering
maps are equal.

In this region, they are different.

(a) The three types of level curves. (b) Zoom around the tangency locus
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|µ| > 0.97

For some values of I, |µα(I)| > 1, the two crests CM,m are
parameterized by:

ϕ = ηM (I, s) = − arcsin(α(I, µ) sin s) mod 2π (9)

ηm(I, s) = arcsin(α(I, µ) sin s) + π mod 2π

They are the vertical crests
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As this happens for some values of I and when it happens, we can
look this crests locally as the horizontal crests, we restrict the
domain of the Scattering map.

Figura: In green, the region where the scattering map is not defined.

23 / ??



Several Scattering maps

In this talk we have just displayed Scattering maps with s = 0. But
if we change its value in the formula

Sε(I, ϕ, s) =

(
I + ε

∂L∗

∂ϕ
(I, ϕ, s) +O(ε2), ϕ− ε ∂L

∗

∂I
(I, ϕ, s) +O(ε2), s

)
,

we have more options for the diffusion, that is, the pseudo-orbit.

Figura: The level curves of the Reduced Poincaré function associated to
CM(I) in blue, and associated to Cm(I) in green, s = π/2.
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Time of diffusion

An estimate of the total time of diffusion between I0 and If along
the highways is

Td ∼ NsTh,

where

Th = log
(
4(|a00|+|a10|+|a01|)

ε

)
is the time along the homoclinic

invariant manifold of Λ̃

Ns = Ts/ε is the number of iterates of the scattering map
along the highway and

Ts =
∫ If
I0

− sinh(Iπ/2)
2πIa10 sinψh(I)

dI, where ψh = θ − Iτ∗(I, θ) is a
parametrization of the highway.

This estimate agrees with the optimal estimate of (Berti-Biasco-Bolle 2003)

and (Treschev 2004), that is, a time of the order O(ε−1 log ε−1).
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Thank you for your attention.
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