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We consider the following a priori unstable Hamiltonian with 2 + %
degrees of freedom with 27-periodic time dependence:

2 2
1
H.(p,q,1,p,8) ==+ (% + cosq — 1>+E+ecosq(aoo + a10cos ¢ + ap1 cos s) ,

where p, I € R, ¢, p, s € T and ¢ is small enough.
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In the unperturbed case, that is, ¢ = 0, the Hamiltonian Hj is
integrable (represents the standard pendulum plus a rotor):
2 IZ

Ho(p7q7179073):%"’_Cosq_l‘i‘?a

with associated equations:

;= 2o _ ;= _OHo _ sin (1)
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and associated flow
¢t(pa q, Ia @, 5) = (p(t)a Q(t)a Ia It + @at + S) .

I is constant.




Arnold diffusion

We have the following result:

Theorem

Consider a Hamiltonian of the form
H.(p,q,1,p,t) = % +cosqg—1+ % +¢e f(q) g(ep,t), where
f(q) = cosq and g(p,t) = agp + a1p cos p + apr cost. Assume
that

ajpaor # 0

Then, for any I* > 0, there exists 0 < e* = &*(I*) << 1 such that
for any €, 0 < € < €%, there exists a trajectory
(p(t),q(t), I(t),p(t)) such that for some T' > 0

1(0) < —I* < I* < I(T).

We consider AT = O(1), at least. This is an example of Arnold
diffusion.



What makes this happen?

We have two important dynamics associated to the system: the
inner and the outer dynamics.

‘7{ = {T?}Ie[fl*,l*} = {(0707—77%3)§I € [_I*7I*] ’ (@73) € TZ}

is a Normally Hyperbolic Invariant Manifold (NHIM)

@ The inner is the dynamics restricted to A. (Inner map)

@ The outer is the dynamics restricted to its invariant manifolds.
(Scattering map)



Inner and outer dynamics

The unperturbed case, ¢ =0

-

Inner Outer

@ Stable and unstable manifolds are coincident.

@ The outer dynamics is the identity.
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The perturbed case, € # 0:

Inner Outer

@ Stable and unstable manifolds, in general, are not coincident.

@ The outer dynamics ensures the growth of I, that is, the
Arnold diffusion.




Outer dynamics: Scattering maps

Let A be a NHIM with invariant manifolds intersecting
transversally along a homoclinic manifold I'. A scattering map is a
map S defined by S(Z_) = Z if there exists Z € T satisfying

|¢5(2) — 95 (Z-)] — Oast — —oco
197 (2) — ¢7(24)] — Oast — +oo,

that is, W*(Z_) intersects transversally W2 (zy) in Z.

ol) = Q@) =x,

Q@) =x s



S(I,,s) is symplectic and exact (Delshams -de la Llave - Seara
2000), this implies that .S takes the form:

* *

oL oL
5u(1pvs) = (146 G0 (10,8 + O, = £ (L) + 0.5

or simply

oL” 8.6*

S:(1,0) = (I+e 50 (1,6) + O(e%),6 — €57 = (1,0) +O(e ))

where § = ¢ — Is and L*(I,0) is the Reduced Poincaré function.

So, our focus will be the level curves of £*(1,6).

Remark: The variable s remains fixed under the action of the
Scattering map, or plays the role of a parameter.



Effectively, how does it ensure the Arnold diffusion?

Basically, we ensure the Arnold diffusion performing the following
scheme:

@ To construct a composition of Scattering map and Inner map.
This composition is called a pseudo-orbit.

@ To use previous results about Shadowing (Gidea-de la Llave -
Seara 2014) for ensuring the existence of a real orbit close to
our pseudo-orbit.
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Is there the BEST pseudo-orbit?

Recall:

@ Our perturbation is € cos q (agy + a19 cos ¢ + apy cos s).

@ the only hypothesis about it is ajpag; # 0.
We have special curves, we called them Highways. In concrete,
they are the level curves of £* such that

27T(Z01

L (I,9)24a00+m.

Why are they special? Because highways are “vertical”
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We define p1 = Zﬁ. Highways are defined in the following regions

in the action I:
@ for |u| < 0.625: I € (—o0, +00)
@ for 0.625 < |u| < 1: (—oo, —I4+4) U (=14, I4) U (44, +00), where

. CIPsinh(r/2) 1
Lr—mlm{l>0.m_m

_ IPsinh(m/2) 1
I++—max{.[>0m—m

@ for |u| > 1:(—o0, —I44) U (=14, 14) U (144, +00), where
. Psinh(r/2) 1
Iy = >0 2T/ e
+ mm{ 70 S Tn/2)
and

3 .
I14+ = max {I >0: I sinh(r/2) L } .

sinh(I7/2) - |ul
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@ We always have a “pair” of highways. One goes up, the other
goes down (this depends on signal of p.)

@ It is easy to construct pseudo-orbits where highways are
defined.
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What is the Reduced Poincaré function?

Note that for scattering maps we have to look for homoclinic
points. We will use the Melnikov Potential:

Proposition

Given (I,¢,s) € [-I*,I*] x T?, assume that the real function
TER+— LUI,p—IT,s—7) ER
has a non degenerate critical point 7* = 7(I, ¢, s), where L(I,p,s) =
+o0
/ h(po(o),qo0(o), I, + Io,s+ 7;0) — h(0,0,1,p0 + Io, s + o;0)do.

Then, for 0 < |e| small enough, there exists a transversal homoclinic point Z to

Ac, which is e-close to the point _
2*(179075) = (pO(T*)qu(T*)7]7307S) € WO(A)

2=3(I,9,5) = (po(7*) + O(€), o (r*) + O(e), I, 0,5) € W"(A.) h W*(A.).

In our model, h(p,q,I,p,s) = cosq(ap0 + agi.cosy + ap; coss).
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@ L is the Melnikov potential.

@ In our case

L(I,p,8) = Ago + A10(I) cos p + Ap cos s, (2)
27‘(‘[&10 27ra01
where Agg = 4 agg, A19(l) = ————— and Ay = — }
00 aoo, Aio(1) sinh(%z) 01 Sinh(%)
o We look for 7* such that
gf([,go—IT*,s—T*) = 0.

In our case, we look for 7* such that:

I'Ayp(I)sin(e —I7") + Ajpsin(s —7°) = 0. (3)
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The Reduced Poincaré function

We define the Reduced Poincaré functions as

‘C*(Ia 0) = ‘C(IvSD - IT*(I7 P, S)’S *T*(Ia 2 S))v
where § = ¢ — I s.

@ It is evaluated on the critical points of £ on the straight line
R(I,p,s) ={(¢p—I7,s—7), 7 € R}. Besides 6 is constant
on the straight line.

@ From another view-point, it is evaluated on the intersection
between R(I,p,s) ={(¢ —I7,s —7), 7 € R} and the curve
of equation

I Ayp(I)sing + Agrsins = 0.
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Definition - Crests (Delshams-Huguet 2011)

For each I, we call crests the pair (¢, s) such that 7* = 0 satisfies
the equation (3), that is,

I Ajo(I)sing + Ag sins = 0. (4)

For the computation of the reduced Poincaré function, we have to
study this equation. We can rewrite it as

pa(l) singp +sins = 0, (5)
where (T P2
o(n) = D L (6)
sinh(%")
and a1
= 7
= (7)
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0 < |u| <0.97

o |pua(I)] < 1, there are two crests Cp m () parameterized by:

s=&u(l,p) = —arcsin(a(l,p)sinp) mod 27 (8)
12

1
Em(I, = arcsin(a(I, p)sing) + mod 27

They are the horizontal crests )
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0 < |u| <0.625

@ For each I, the line R(1, ¢, s) and the crest Cy m (/) have
only one intersection point.

@ The intersection is always transversal.

@ We have well defined Sy; and S,,, where Sy is the scattering
map associated to the intersections between Cy(I) and
R(I,p,s) and Sy, is the scattering map associated to the
intersection between Cn,(I) and R(I, ¢, s).

Figura: Level curve of £* associated to Cm(]).
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0.625 < |yl

@ The equations of the crests are the same.

@ There are tangencies between Cpym(1, ) and R(I, ¢, s). If
0 # m, the tangency happens for two angles. In this case, for
some value of (¢, s), there are 3 points in

R(I,p,8) NCrMmm(I).

@ The item above implies that there are three scattering maps
associated to each crest. In this case we have Multiple

Scattering maps.
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We define as tangency locus the set

{woStae -1}

@ Out of the delimited region by the tangency locus: Scattering
maps are equal.

@ In this region, they are different.

(a) The three types of level curves. (b) Zoom around the tangency locus
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| > 0.97

e For some values of I, |ua(I)| > 1, the two crests Cy m, are
parameterized by:

e=nmI,s) = —arcsin(a(l,p)sins) mod 27 (9)

nm(I,s) = arcsin(a(l,p)sins) +m mod 27

)

s
ol /
2
w2 ™ 3/2

They are the vertical crests )




As this happens for some values of I and when it happens, we can
look this crests locally as the horizontal crests, we restrict the
domain of the Scattering map.

n-15

R S - R VY

Figura: In green, the region where the scattering map is not defined.
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Several Scattering maps

In this talk we have just displayed Scattering maps with s = 0. But
if we change its value in the formula

* *

oL
(17@75) + 0(52)7 Y —€ W(Ia(pﬂs) + 0(52)7 8) ’

oL
Se(I,p,s) = (I—i—s a5

we have more options for the diffusion, that is, the pseudo-orbit.

Figura: The level curves of the Reduced Poincaré function associated to
Cm(I) in blue, and associated to Cr(I) in green, s = /2.
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Time of diffusion

An estimate of the total time of diffusion between Iy and I5 along
the highways is

Td ~ NSThv
where

o Ty = log (4(|a°°|+‘“10‘+|a°1|)) is the time along the homoclinic

£

invariant manifold of A

@ N = T,/e is the number of iterates of the scattering map
anng the highway and
—sinh(I7/2 X .
ro 7%121; Sm”w/h()l) dI, where ¢, = 0 — IT*(I,0) is a
parametrlzatlon of the highway.

This estimate agrees with the optimal estimate of (Berti-Biasco-Bolle 2003)
and (Treschev 2004), that is, a time of the order O(s™*loge™!).
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Thank you for your attention.

DA
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