Arnold diffusion for 'complete' families of perturbations with two or three independent harmonics HAMSYS2018
 Centre de Recerca Matemàtica, Barcelona, September 3-7, 2018

Amadeu Delshams Rodrigo G. Schaefer

Laboratory of Geometry and Dynamical Systems Universitat Politècnica de Catalunya

September 3 ${ }^{\text {rd }}, 2018$

Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables (φ, s) :

$$
\begin{gather*}
H_{\varepsilon}(p, q, l, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{l^{2}}{2}+\varepsilon h(q, \varphi, s) \tag{1}\\
h(q, \varphi, s)=f(q) g(\varphi, s), \quad f(q)=\cos q \tag{2}\\
g(\varphi, s)=a_{1} \cos \left(k_{1} \varphi+l_{1} s\right)+a_{2} \cos \left(k_{2} \varphi+l_{2} s\right),
\end{gather*}
$$

for some $k_{1}, k_{2}, I_{1}, I_{2} \in \mathbb{Z}$.
Theorem
Assume that $a_{1} a_{2} \neq 0$ and $\left|\begin{array}{ll}k_{1} & k_{2} \\ l_{1} & l_{2}\end{array}\right| \neq 0$ in (1)-(2). Then, for any $I^{*}>0$, there exists $\varepsilon^{*}=\varepsilon^{*}\left(I^{*}, a_{1}, a_{2}\right)>0$ such that for any $\varepsilon, 0<\varepsilon<\varepsilon^{*}$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some $T>0$

$$
I(0) \leq-I^{*}<I^{*} \leq I(T)
$$

Remark: $I(t) \equiv$ constant for $\varepsilon=0$.

Goals

- To review the construction of scattering maps initiated in [D-Llave-Seara00], designed to detect global instability.
- To compute explicitly several scattering maps to prove global instability for the action $/$ for any $\varepsilon>0$ small enough.
- To estimate the time of diffusion in some cases (at least for $k_{1}=I_{2}=1$ and $I_{1}=k_{2}=0$).
- To play with the parameter $\mu=a_{1} / a_{2}$ to prove global instability for any value of $\mu \neq 0, \infty$.
- To describe bifurcations of the scattering maps.
- To get a glimpse of the $3+\frac{1}{2}$ degrees of freedom case.

It is easy to check that if

$$
\Delta:=k_{1} l_{2}-k_{2} l_{1}=0 \quad \text { or } \quad a_{1}=0 \quad \text { or } \quad a_{2}=0
$$

there is no global instability for the variable I.
If $\Delta a_{1} a_{2} \neq 0$, after some rational linear changes in the angles, we only need to study two cases:

- The first (and easier) case [D-Schaefer17]

$$
g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s
$$

- The second case [D-Schaefer17a]

$$
g(\varphi, \sigma)=a_{1} \cos \varphi+a_{2} \cos \sigma
$$

where $\sigma=\varphi-s$.

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].
In the unperturbed case $\varepsilon=0$, the Hamiltonian H_{0} is integrable formed by the standard pendulum plus a rotor

$$
H_{0}(p, q, I, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{l^{2}}{2}
$$

I is constant: $\quad \triangle I:=I(T)-I(0) \equiv 0$.

For any $0<\varepsilon \ll 1$, there is a finite drift in the action of the rotor I : $\Delta I=\mathcal{O}(1)$, so we have global instability.

In short, this is is also frequently called Arnold diffusion.

Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several Scattering maps and the Inner map, giving rise to diffusing pseudo-orbits.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14]) for ensuring the existence of real orbits close to the pseudo-orbits.

We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\widetilde{\Lambda}$:

$$
\widetilde{\Lambda}=\left\{(0,0, I, \varphi, s) ; I \in\left[-I^{*}, I^{*}\right],(\varphi, s) \in \mathbb{T}^{2}\right\}
$$

which is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated 4D stable $W_{\varepsilon}^{s}(\widetilde{\Lambda})$ and unstable $W_{\varepsilon}^{u}(\widetilde{\Lambda})$ invariant manifolds.

- The inner dynamics is the dynamics restricted to $\tilde{\Lambda}$. (Inner map)
- The outer dynamics is the dynamics along the invariant manifolds to $\widetilde{\Lambda}$. (Scattering map)
Remark: Due to the form of the perturbation, $\widetilde{\Lambda}=\widetilde{\Lambda}_{\varepsilon}$.

For the first case $g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s$, the inner dynamics is described by the Hamiltonian systems with the Hamiltonian

$$
K(I, \varphi, s)=\frac{l^{2}}{2}+\varepsilon\left(a_{1} \cos \varphi+a_{2} \cos s\right)
$$

In this case the inner dynamics is integrable (a pendulum).

For $g(\varphi, \sigma)$, the inner dynamics is given by the Hamiltonian

$$
K(I, \varphi, \sigma)=\frac{l^{2}}{2}+\varepsilon\left(a_{1} \cos \varphi+a_{2} \cos \sigma\right)
$$

where $\sigma=\varphi-s$. The system associated to this Hamiltonian is not integrable and two resonances arise in $I=0$ and $I=1$.

Let $\widetilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ. A scattering map is a map S defined by $S\left(\tilde{x}_{-}\right)=\tilde{x}_{+}$if there exists $\tilde{z} \in \Gamma$ satisfying

$$
\left|\phi_{t}^{\varepsilon}(\tilde{z})-\phi_{t}^{\varepsilon}\left(\tilde{x}_{\mp}\right)\right| \longrightarrow 0 \text { as } t \longrightarrow \mp \infty
$$

that is, $W_{\varepsilon}^{u}\left(\tilde{x}_{-}\right)$intersects transversally $W_{\varepsilon}^{s}\left(\tilde{x}_{+}\right)$in \tilde{z}.

S is symplectic and exact [D-Llave-Seara08] and takes the form:

$$
S_{\varepsilon}(I, \varphi, s)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), s\right),
$$

where $\theta=\varphi$-Is and $\mathcal{L}^{*}(I, \theta)$ is the Reduced Poincaré function, or more simply in the variables (I, θ) :

$$
\mathcal{S}_{\varepsilon}(I, \theta)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right)\right)
$$

- The variable s remains fixed under S_{ε} : it plays the role of a parameter
- Up to first order in $\varepsilon, \mathcal{S}_{\varepsilon}$ is the - ε-time flow of the Hamiltonian $\mathcal{L}^{*}(I, \theta)$
- The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^{*}(I, \theta)$

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\varepsilon}$

Proposition

Given $(I, \varphi, s) \in\left[-I^{*}, I^{*}\right] \times \mathbb{T}^{2}$, assume that the real function

$$
\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi-I \tau, s-\tau) \in \mathbb{R}
$$

has a non degenerate critical point $\tau^{*}=\tau(I, \varphi, s)$, where

$$
\mathcal{L}(I, \varphi, s)=\int_{-\infty}^{+\infty}\left(\cos q_{0}(\sigma)-\cos 0\right) g(\varphi+I \sigma, s+\sigma ; 0) d \sigma .
$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε-close to the point $\tilde{z}^{*}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right), q_{0}\left(\tau^{*}\right), I, \varphi, s\right) \in W^{0}(\widetilde{\Lambda})$:

$$
\tilde{z}=\tilde{z}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right)+O(\varepsilon), q_{0}\left(\tau^{*}\right)+O(\varepsilon), l, \varphi, s\right) \in W^{u}\left(\tilde{\Lambda}_{\varepsilon}\right) \pitchfork W^{s}\left(\tilde{\Lambda}_{\varepsilon}\right)
$$

The Melnikov Potential

In our model $q_{0}(t)=4 \arctan \mathrm{e}^{t}, p_{0}(t)=2 / \cosh t$ is the separatrix for positive p of the standard pendulum $P(q, p)=p^{2} / 2+\cos q-1$.

- For $g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s$, the Melnikov potential becomes

$$
\mathcal{L}(I, \varphi, s)=A_{1}(I) \cos \varphi+A_{2} \cos s
$$

where $A_{1}(I)=\frac{2 \pi I a_{1}}{\sinh \left(\frac{I \pi}{2}\right)}$ and $A_{2}=\frac{2 \pi a_{2}}{\sinh \left(\frac{\pi}{2}\right)}$.

- For $g(\varphi, \sigma)=a_{1} \cos \varphi+a_{2} \cos \sigma(\sigma=\varphi-s)$, the Melnikov potential becomes

$$
\mathcal{L}(I, \varphi, \sigma)=A_{1}(I) \cos \varphi+A_{2}(I) \cos \sigma,
$$

where $A_{1}(I)$ is as before but now $A_{2}(I)=\frac{2(I-1) \pi a_{2}}{\sinh \left(\frac{(I-1) \pi}{2}\right)}$.

Outer dynamics

The Melnikov Potential

The Melnikov potentials are similar in both cases.

Figure: The Melnikov Potential, $\mu=a_{1} / a_{2}=0.6, I=1, g(\varphi, s)$.

Finally, the function $\mathcal{L}^{*}(I, \theta)$ can be defined:
Definition
The Reduced Poincaré function is

$$
\mathcal{L}^{*}(I, \theta)=\mathcal{L}\left(I, \varphi-I \tau^{*}(I, \varphi, s), s-\tau^{*}(I, \varphi, s)\right)
$$

where $\theta=\varphi-I$ s.

Therefore the definition of $\mathcal{L}^{*}(I, \theta)$ depends on the function $\tau^{*}(I, \varphi, s)$.

From the Proposition given above, we look for τ^{*} such that $\frac{\partial \mathcal{L}}{\partial \tau}\left(I, \varphi-I \tau^{*}, s-\tau^{*}\right)=0$.

Different view-points for $\tau^{*}=\tau^{*}(I, \varphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(I, \varphi, s)=\{(\varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$.
- Look for intersections between $R(I, \varphi, s)=\{(\varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$ and a crest which is a curve of equation

$$
\left.\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi-I \tau, s-\tau)\right|_{\tau=0}=0
$$

Note that the crests are characterized by $\tau^{*}(I, \varphi, s)=0$.

Crests

Definition - Crests [D-Huguet11]

For each I, we call crest $\mathcal{C}(I)$ the set of curves in the variables (φ, s) of equation

$$
\begin{equation*}
I \frac{\partial \mathcal{L}}{\partial \varphi}(I, \varphi, s)+\frac{\partial \mathcal{L}}{\partial s}(I, \varphi, s)=0 . \tag{3}
\end{equation*}
$$

which in our case can be rewritten as

$$
g(\varphi, s): \mu \alpha(I) \sin \varphi+\sin s=0, \quad \text { with } \alpha(I)=\frac{I^{2} \sinh \left(\frac{\pi}{2}\right)}{\sinh \left(\frac{\pi I}{2}\right)}, \quad \mu=\frac{a_{1}}{a_{2}} .
$$

$g(\varphi, \sigma=\varphi-s): \quad \mu \alpha(I) \sin \varphi+\sin \sigma=0, \quad$ with $\alpha(I)=\frac{I^{2} \sinh \left(\frac{(I-1) \pi}{(I-1)^{2} \sinh \left(\frac{\pi I}{2}\right)}, \quad \mu=\frac{a_{1}}{a_{2}} .\right.}{\text {. }}$

- For any I, the critical points of the Melnikov potential $\mathcal{L}(I, \cdot, \cdot)((0,0),(0, \pi)$, $(\pi, 0)$ and (π, π) : one maximum, one minimum point and two saddle points) always belong to the crest $\mathcal{C}(I)$.
- $\mathcal{L}^{*}(I, \theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta=\varphi$ - Is is constant on the NHIM line $R(I, \varphi, s)$

Outer dynamics

Geometrical interpretation

Figure: Level curves of \mathcal{L} for $\mu=a_{1} / a_{2}=0.5, I=1.2$ and $g(\varphi, s)$.

Understanding the behavior of the crests
\Downarrow
Understanding the behavior of the Reduced Poincaré function
\Downarrow
Understanding the Scattering map

- For $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by:

$$
\begin{align*}
s=\xi_{M}(I, \varphi) & =-\arcsin (\mu \alpha(I) \sin \varphi) & \bmod 2 \pi \tag{4}\\
\xi_{m}(I, \varphi) & =\arcsin (\mu \alpha(I) \sin \varphi)+\pi & \bmod 2 \pi
\end{align*}
$$

They are "horizontal" crests

$g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s$

- For each I, the NHIM line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ has only one intersection point.
- The scattering map S_{M} associated to the intersections between $\mathcal{C}_{\mathrm{M}}(I)$ and $R(I, \varphi, s)$ is well defined for any $\varphi \in \mathbb{T}$. Analogously for S_{m}, changing M to m . In the variables $(I, \theta=\varphi-I s)$, both scattering maps $\mathcal{S}_{\mathrm{M}}, \mathcal{S}_{\mathrm{m}}$ are globally well defined.

- There are tangencies between $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I, \varphi)$ and $R(I, \varphi, s)$. For some value of (I, φ, s), there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{M, \mathrm{~m}}(I)$.
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

$g(\varphi, s)=a_{1} \cos \varphi+a_{2} \cos s$

(c) The three types of level curves.

(d) Zoom where the scattering maps are different

Figure: Level curves of $\mathcal{L}_{M}^{*}(I, \theta), \mathcal{L}_{M}^{*(1)}(I, \theta)$ and $\mathcal{L}_{M}^{*(2)}(I, \theta)$

- For some values of $I,|\mu \alpha(I)|>1$, the two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}$ are parameterized by:

$$
\begin{align*}
\varphi=\eta_{M}(I, s) & =-\arcsin (\mu \alpha(I) \sin s) & \bmod 2 \pi \tag{5}\\
\eta_{m}(I, s) & =\arcsin (\mu \alpha(I) \sin s)+\pi & \bmod 2 \pi
\end{align*}
$$

They are "vertical" crests

For the values of I for which horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

Figure: The level curves of $\mathcal{L}_{\mathrm{M}}^{*}(I, \theta), \mu=1.5$.
In green, the region where the scattering map S_{M} is not defined.

Definition: Highways
Highways are the level curves of \mathcal{L}^{*} such that

$$
\mathcal{L}^{*}(I, \theta)=A_{2}=\frac{2 \pi a_{2}}{\sinh (\pi / 2)}
$$

- The highways are "vertical" in the variables (φ, I)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu=a_{1} / a_{2}$)
- The highways give rise to fast diffusing pseudo-orbits

Highways

Figure: The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^{*}(I, \theta)$

Figure: In red: Inner map, blue: Scattering map, black: Highways

An estimate of the total time of diffusion between $-I^{*}$ and I^{*}, along the highway, is

$$
T_{\mathrm{d}}=\frac{T_{\mathrm{s}}}{\varepsilon}\left[2 \log \left(\frac{C}{\varepsilon}\right)+\mathcal{O}\left(\varepsilon^{b}\right)\right], \text { for } \varepsilon \rightarrow 0, \text { where } 0<b<1
$$

with

$$
T_{\mathrm{s}}=T_{\mathrm{s}}\left(I^{*}, a_{1}, a_{2}\right)=\int_{0}^{I^{*}} \frac{-\sinh (\pi I / 2)}{\pi a_{1} I \sin \psi_{\mathrm{h}}(I)} d I
$$

where $\psi_{\mathrm{h}}=\theta-I \tau^{*}(I, \theta)$ is the parameterization of the highway $\mathcal{L}^{*}\left(I, \psi_{\mathrm{h}}\right)=A_{2}$, and

$$
C=C\left(I^{*}, a_{1}, a_{2}\right)=16\left|a_{1}\right|\left(1+\frac{1.465}{\sqrt{1-\mu^{2} A^{2}}}\right)
$$

where $A=\max _{I \in\left[0, I^{*}\right]} \alpha(I)$, with $\alpha(I)=\frac{\sinh \left(\frac{\pi}{2}\right) I^{2}}{\sinh \left(\frac{\pi I}{2}\right)}$ and $\mu=a_{1} / a_{2}$.
Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01] and quantifies the general optimal diffusion estimate $\mathcal{O}\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ of [Berti-Biasco-Bolle03] and [Treschev04].

Second case: $g(\varphi, \sigma), \sigma=\varphi-s \quad$ Main differences

In the second case:

- For $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by $\sigma=\xi_{M}(I, \varphi)$ and $\xi_{m}(I, \varphi)$. For $|\mu \alpha(I)|>1, \mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by $\varphi=\eta_{M}(I, \sigma)$ and $\eta_{m}(I, \sigma)$. The crests lie on the plane (φ, σ)
- There are no global Highways.
- For any value of $\mu=a_{1} / a_{2}$ is possible to find I_{h} and I_{v} such that for $I=I_{\mathrm{h}}$ the crests are horizontal and for $I=I_{\mathrm{V}}$ the crests are vertical.
- For any value of μ there exists / such that the crests and some NHIM line are tangent. There are always multiple scattering maps

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$
 Computation of τ^{*}

From the definitions of $R(I, \varphi, s)$ and $\mathcal{C}(I)$, we have

$$
R(I, \varphi, s) \cap \mathcal{C}(I)=\left\{\left(I, \varphi-I \tau^{*}(I, \varphi, s), s-\tau^{*}(I, \varphi, s)\right)\right\} .
$$

Introducing

$$
\tau^{*}(I, \theta):=\tau^{*}(I, \varphi-I s, 0), \quad \text { with } \theta=\varphi-I s=(1-I) \varphi+I \sigma
$$

one can see that on the plane $(\varphi, \sigma=\varphi-s)$, the NHIM lines take the form

$$
R_{l}(\varphi, \sigma)=\{(\varphi-I \tau, \sigma-(I-1) \tau), \tau \in \mathbb{R}\}
$$

and that

$$
R_{I}(\varphi, \sigma) \cap \mathcal{C}(I)=\left\{\left(\theta-I \tau^{*}(I, \theta), \theta-(I-1) \tau^{*}(I, \theta)\right)\right\}
$$

Therefore, the function $\tau^{*}(I, \theta)$ is the time spent to go from a point (θ, θ) in the diagonal $\sigma=\varphi$ up to $\mathcal{C}(I)$ with a velocity vector $\mathbf{v}=-(I, I-1)$.
Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of $\tau^{*}(I, \theta)$ is very important and useful.

Figure: Going down along NHIM lines

Figure: The "lower" crest

Green zones: I increases under the scattering map.
Red zones: I decreases under the scattering map.

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Kinds of scattering maps

Figure: Going up along NHIM lines

Figure: The "upper" crest

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Kinds of scattering maps

Figure: Minimal time

Figure: Minimal $\left|\tau^{*}\right|$ between "lower" and "upper" crest

Second case: $g(\varphi, \sigma), \sigma=\varphi-s$

Piecewise smooth $\mathcal{S}(I, \theta)$

In this picture we show a combination of 3 scattering maps.

Figure: First intersection

Figure: Minimal $\left|\tau^{*}\right|$ between $\mathcal{C}_{\mathrm{M}}(I)$ and $\mathcal{C}_{\mathrm{m}}(I)$

Consider a pendulum and two rotors plus a time periodic perturbation depending on three harmonics in the angles $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}=s\right)$:

$$
\begin{align*}
& H_{\varepsilon}\left(p, q, I_{1}, l_{2}, \varphi_{1}, \varphi_{2}, s\right)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+h\left(l_{1}, l_{2}\right) \\
&+\varepsilon f(q) g\left(\varphi_{1}, \varphi_{2}, s\right) \tag{6}\\
& h\left(I_{1}, l_{2}\right)=\Omega_{1} I_{1}^{2} / 2+\Omega_{2} I_{2}^{2} / 2, \quad f(q)=\cos q \tag{7}\\
& g\left(\varphi_{1}, \varphi_{2}, s\right)=a_{1} \cos \varphi_{1}+a_{2} \cos \varphi_{2}+a_{3} \cos s .
\end{align*}
$$

Theorem (Arnold diffusion for a two-parameter family)
Assume $a_{1} a_{2} a_{3} \neq 0$ and $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$ in Hamiltonian (6)+(7). Then, for any two actions $I_{ \pm}$and any δ there exists $\varepsilon_{0}>0$ such that for every $0<|\varepsilon|<\varepsilon_{0}$ there exists an orbit $\tilde{x}(t)$ and $T>0$ such that

$$
\left|I(\tilde{x}(0))-I_{-}\right| \leq \delta \quad \text { and } \quad\left|I(\tilde{x}(T))-I_{+}\right| \leq \delta
$$

For $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$ there are two horizontal crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$, and both scattering maps $\mathcal{S}_{\mathrm{M}}, \mathcal{S}_{\mathrm{m}}$ are globally well defined.

Figure: Horizontal crests: $a_{1} / a_{3}=a_{2} / a_{3}=0.48, \Omega_{1} I_{1}=\Omega_{2} I_{2}=1.219$.

Diffusing orbits are found by shadowing orbits of both scattering maps scattering maps and the inner dynamics.

Remark

Actually, we can prove that given any two actions $I_{ \pm}$and any path $\gamma(s)$ joining them in the actions space, there exists an orbit $\tilde{x}(t)$ such that $I(\tilde{x}(t))$ is δ-close to $\gamma(\Psi(t))$ for some parameterization Ψ.

Highways ois an invariant set $\mathcal{H}=\{(I, \Theta(I))\}$ of the Hamiltonian given by the reduced Poincaré function $\mathcal{L}^{*}(I, \theta)$ wich is contained in the level energy $\mathcal{L}^{*}(I, \theta)=A_{3}$.
Then, $\Theta(I)$ is a grandient function, i.e., there exists a function $F(I)$ such that $\Theta(I)=\nabla F(I)$.

Theorem (Asymptotic approximation)
Assume $a_{1} a_{2} a_{3} \neq 0$ and $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$ in Hamiltonian (6)+(7). For I_{1} and I_{2} close to infinity, the function F takes the asymptotic form

$$
\begin{align*}
F(I)=\frac{3 \pi}{2}\left(I_{1}+I_{2}\right)-\sum_{i=1,2} \frac{2 a_{i} \sinh (\pi / 2)}{\pi^{4} \Omega_{i}}\left(\pi^{3} \omega_{i}^{3}+6 \pi^{2} \omega_{i}^{2}\right. & \left.+24 \pi \omega_{i}+48\right) e^{-\pi \omega_{i} / 2} \\
& +\mathcal{O}\left(\omega_{1}^{2} \omega_{2}^{2} e^{\pi\left(\omega_{1}+\omega_{2}\right) / 2}\right) \tag{8}
\end{align*}
$$

- Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with optimal diffusion time.J.Math.Pures Appl.. 2003.
- Delshams, de la LLave, Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of \mathbb{T}^{2}. Comm. Math. Phys.. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model.Mem. Amer. Math. Soc.. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion.Advances in Mathematics.2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity. 2009.

A short bibliography

- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equations. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations.Regular and Chaotics Dynamics. 2017.
- Delshams, Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics.Arxiv. 2017.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. arXiv. 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity . 2004.

