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The a priori unstable system The result

Consider a pendulum and a rotor plus a time periodic perturbation
depending on two harmonics in the variables (¢, s):

2

p I
Hs(p7 q, 173075) ==+ <2

+cosq — 1) —i—E—i—sh(q, ©,s) (1)

h(q,¢,s) = f(q)g(p,s),
f(q) = cosq, g(p,s) = ay cos(kip + hs) + ax cos(kap + hs),
with ki, ko, h, b € Z.

Theorem

Assume that aja» # 0 and ‘kl 2‘ # 0 in (1)-(2). Then, for any I* > 0,

there exists ¢* = £*(I*, a1, az) > 0 such that for any €, 0 < € < £*, there
exists a trajectory (p(t), q(t), I(t),p(t)) such that for some T >0

10) < —I* < I* < I(T).

v
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The a priori unstable system Goals

@ To review the construction of scattering maps initiated in
[Delshams-Llave-Seara00], designed to detect global instability.

@ To compute explicitly several scattering maps to prove global
instability for the action / for any € > 0 small enough.

@ To estimate the time of diffusion in some cases (at least for
k1:/2:1and /1:/(220).

e To play with the parameter . = aj/ay to prove global instability for
any value of u # 0, cc.

@ To describe bifurcations of the scattering maps.
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The a priori unstable system Assumptions and Reduction

It is easy to check that if
A:=kbh—kh=0 o a=0 o a=0

there is no global instability for the variable /.

If Aajap # 0, after some rational linear changes in the angles, we only
need to study two cases:

@ The first (and easier) case [Delshams-S17]
g(p,s) = a1 cos + azcos s
@ The second case [Delshams-S17a]
g(p,0) = aicosp + apcoso,

where 0 = ¢ — 5.
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The a priori unstable system The unperturbed system

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case € = 0, the Hamiltonian Hp is integrable formed by
the standard pendulum plus a rotor

p2 /2
Ho(p,q,/,SO,S) = <2+C05q—1> +§

| is constant: ~ Al:=[(T)—1(0) = 0. )

For any 0 < € < 1, there is a finite drift in the action of the rotor /:
Al = O(1), so we have global instability.

In short, this is is also frequently called Arnold diffusion.
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The a priori unstable system Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:
@ To construct iterates under several Scattering maps and the Inner
map, giving rise to diffusing pseudo-orbits.

@ To use previous results about Shadowing [Fontich-Martin00],
[Gidea-Llave-Searal4] for ensuring the existence of real orbits close to
the pseudo-orbits.
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The a priori unstable system Two dynamics in the NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics on a large invariant object A.

A={(0,0,1,¢,5):1 € [-I",I"] . (¢¢,5) € T2}.

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated

4D stable WZ(A) and unstable WY(A) invariant manifolds.

@ The inner dynamics is the dynamics restricted to A. (Inner map)

@ The outer dynamics is the dynamics along the invariant manifolds to
A. (Scattering map)

Remark: Due to the form of the perturbation, A=A, .

Rodrigo G. Schaefer (UPC) Global Instability in Hamiltonian Systems GDIS 2018 7 /40



For the first case g(p,s) = aj cos ¢ + ap coss, the inner dynamics is
described by the Hamiltonian systems with the Hamiltonian

2
K(l,¢,5) = 7 + e (a1 cosp + apcess).

In this case the inner dynamics is integrable.
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For g(y, o), the inner dynamics is described by the Hamiltonian

/2
K(l,p,0)= 5 +e(ayrcosp + arcoso),
where 0 = ¢ — s. The system associated to this Hamiltonian is not

integrable and two resonances arise in / =0 and [ = 1.

e ———

0 w/2 ® 3w/2 2w
%)
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Outer dynamics Scattering map

Let A be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold I'. A scattering map is a map S defined by
S(X_) = X4 if there exists Z € T satisfying

|65(2) — p5(X¢)| — Oast — Foo

that is, WX(X_) intersects transversally W2(X;) in Z.

o'r(x_) =

Q. (z)=x. s
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Outer dynamics Scattering map

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

oL*
00

(1,0) + O(e?),0 — ¢ 6;:/* (1,0) + O(£?), s) :

S.(1,¢,8) = (/ +¢

where = ¢ — Is and £*(/, ) is the Reduced Poincaré function, or more simply
in the variables (/, 6):

SA(1,0)=(1+¢ %(I,G) +0(£%),0 — ¢ %(Iﬁ) +0(Y) ),
00 ol
@ The variable s remains fixed under S.: it plays the role of a parameter

@ Up to first order in &, S. is the —e-time flow of the Hamiltonian £*(/, 9)

@ The scattering map jumps O(e) distances along the level curves of L*(/,0)
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To get a scattering map we search for homoclinic orbits to A.

Proposition

Given (I, ¢,s) € [—1*,1*] x T2, assume that the real function

TeER+— L(L,p—IT,s—7T) €R

has a non degenerate critical point 7% = 7(/, ¢, s), where

+oo
L(I,,5) = / (cosqo(0) —cos0) g(¢ + lo, s+ 0;0)do.

— 00

Then, for 0 < |e| small enough, there exists a transversal homoclinic point Z to
A<, which is e-close to the point 2*(1,¢,s) = (po(7*), go(7%), 1,0, 5) € WO(A):

2= #(1,,5) = (po(7") + O(e), qo(7") + O(e), I, 0, 5) € W(A.) h W3(A.).

v
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In our model qo(t) = 4arctane®, po(t) = 2/cosh t is the separatrix for
positive p of the standard pendulum P(q, p) = p?>/2 + cosq — 1.

@ For g(p,s) = a1 cosp + a cos s, the Melnikov potential becomes

L(l,p,s) = A1(l) cosp + Az cosss,

27 2
where A(1) = =7 and Ay = 2122

"~ sinh (%) an sinh (g) '

@ For g(p,0) = a1cosp + axcoso (0 = ¢ — s), the Melnikov potential
becomes

L(l,p,0) = A1(l)cosp + Ax(l) cos o,
2(/ — 1)7T32
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where A;(/) is as before but now Ax(/) =



The Melnikov potentials are similar in both cases.

O N WRUVUO N ®

Figure: The Melnikov Potential, u = a1/a, = 0.6, | =1, g(¢, s).
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Outer dynamics Reduced Poincaré function

Finally, the function £*(/,0) can be defined:

Definition
The Reduced Poincaré function is

L£(1,0)=L(l,o—17"(1,0,5),s —7(,¢,5)),

where 6 = ¢ — I 's.

Therefore the definition of £*(/,0) depends on the function 7*(/, ¢, s).
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From the Proposition given above, we look for 7* such that
g—f(/,go— I7*,s—71*)=0.

Different view-points for 7% = 7*(/, ¢, s)
@ Look for critical points of £ on the straight line, called NHIM line
R(l,¢,s)={(l,p—I71,5s—71), T € R}
@ Look for intersections between
R(l,¢,s) ={(l,o —I71,5—7), 7 € R} and a crest which is a curve

of equation
gf(l,cp —I7,5 = T)|r=0 =0.

Note that the crests are characterized by 7*(/, ¢, s) = 0.
The crests were introduced in [Delshams-Huguet11]. A similar
construction appears in [Davletshin-Treschev16].
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Outer dynamics Crests

Definition - Crests [Delshams-Huguet11]

For each I, we call crest C(!) the set of curves in the variables (¢, s) of equation

oL oL
1=—=(1 —(/ =0. 3
5 05) + 5 (e.9) 3)
which in our case can be rewritten as
2 s
g(p,s): pa(l) sing +sins =0, with a(/) = '_5'"“,5?), uw= a
sinh(7%5") a
12 sinh({=17 a1

glp, 0 =9 —5s): pa(l)sing+sinc =0, with oz(l):m7 p=

@ For any /, the critical points of the Melnikov potential £(/,,-) ((0,0), (0,7),
(m,0) and (7, 7): one maximum, one minimum point and two saddle points)
always belong to the crest C(/).

@ L*(1,0) is nothing else but £ evaluated on the crest C(/).
@ 0 = — Is is constant on the NHIM line R(/, ¢, s)
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Outer dynamics Geometrical interpretation

Figure: Level curves of £ for y = a1/ax = 0.5, | = 1.2 and g(¢p,s).
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Outer dynamics Geometrical interpretation

Understanding the behavior of the crests

4

Understanding the behavior of the Reduced Poincaré function

4

Understanding the Scattering map
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ST IR (RN 0 < || < 0.97

@ For |pa(l)] < 1, there are two crests Cy,m(/) parameterized by:

s=¢&u(l,p) = —arcsin(ua(l)sinp) mod 27 4)
Em(l, ) = arcsin(ua(l)sing) + 7 mod 27

1-12
#=06

2 ™ 312

They are “horizontal” crests }
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SIS RN 0 < || < 0.625

@ For each /, the NHIM line R(/, ¢, s) and the crest Cm,m(/) has only one
intersection point.

@ The scattering map Sw associated to the intersections between Cyw(/) and
R(1, ¢, s) is well defined for any ¢ € T. Analogously for Sy, changing M to m. In
the variables (/,0 = ¢ — Is), both scattering maps Sm, Sm are globally well defined.

Wb o e N w s

= 0.6

&

&

o

(a) Level curves of Ly(/,6) (b) Level curves of L},(1,0)
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First case: g(¢,s) KPR

@ There are tangencies between Cum(/,¢) and R(/,¢,s). For some value of
(1,,s), there are 3 points in R(/,¢,s) N Crm(/)-

@ This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)

1-15
#=09
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First case: g(¢,s) KPR

1

4
3
2
1]
I o
EY
2
3
4

s=0

(c) The three types of level curves. (d) Zoom where the scattering maps
are different

Figure: Level curves of L},(/,6), E*M(l)(/,f)) and E*M(z)(l,ﬁ)
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First case: g(y,s) || > 0.97

@ For some values of /,

pe(l)] > 1, the two crests Cy,m are parameterized by:

p=nm(l,s) = —arcsin(ua(l)sins) mod 27 (5)
Nm(l,s) = arcsin(ua(l)sins) + mod 27
g 2 : ™ 372
They are “vertical” crests )
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First case: g(y,s) || > 0.97

For the values of [ for which horizontal crests become vertical, it is not
always possible to prolong in a continuous way the scattering maps, so the
domain of the scattering map has to be restricted.

O S - S

Figure: The level curves of £,(/,60), n = 1.5.

In green, the region where the scattering map Sy is not defined.
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First case: g(y,s) Highways

Definition: Highways

Highways are the level curves of L* such that

271'31

L0 = iy

@ The highways are "vertical” in the variables (¢, s)

@ We always have a pair of highways. One goes up, the other goes
down (this depends on the sign of © = a;/az)

@ The highways give rise to fast diffusing pseudo-orbits
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First case: g(y,s) Highways

N

—

o

kN

o

m

[

Figure: The scattering map jumps O(e) distances along the level curves of
L£(1,0)
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HS N LA NE An example of pseudo-orbit

u=l5"

Figure: In red: Inner map, blue: Scattering map, black: Highways, u = 1.5.

Rodrigo G. Schaefer (UPC) Global Instability in Hamiltonian Systems GDIS 2018 28 / 40



SIS NI AP N Time of diffusion

An estimate of the total time of diffusion between —/* and /", along the highway, is
Ts
Ty = - [2 log <g) + (’)(eb)} , fore —+ 0, where 0 < b < 1,

with

o
. —sinh(w//2)
Ts = Ts(I7, a1, = ———=dl,
(1" a1, 2) /0 mail sinyn(l)

where ¢, = 60 — I77(1,0) is the parameterization of the highway £*(/, 1) = Az, and

C=C(I",a1,a2) =16]a1| | 1 + _ 1465
1— p2A?

2
where A = max;¢o,+] a(/), with a(l) = S::h(,r, and g = a1/a.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-ValdinociO1]
e . [P . 1 1

and quantifies the general optimal diffusion estimate O (g log g) of

[Berti-Biasco-Bolle03] and [Treschev04].
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Second case: g(p,0),0 =@ —s Main differences

In the second case:

e For |pua(l)| < 1, there are two crests Cym(/) parameterized by
o=E&m(l,e) and En(1, ). For |pa(l)] > 1, Cmm(l) parameterized
by ¢ = nm(l,0) and nm(l, o). The crests lie on the plane (¢, o)

@ There are no Highways.

@ For any value of ;1 = aj/a, is possible to find /, and /, such that for
| = |, the crests are horizontal and for | = |, the crests are vertical.

@ For any value of i there exists / such that the crests and some NHIM
line are tangent.There are always multiple scattering maps
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Second case: g(p,0), 0 =y Computation of 7*

From the definitions of R(/,,s) and C(/), we have

R(l,o,s)NC() ={(l,p—I7"(l,¢,5),s —7"(I,¢,5))}.
Introducing

7*(1,0) =71, — Is,0), with0=p—Is=(1—1)p+lo,
one can see that on the plane (p,0 = ¢ —s), the NHIM lines take the form
Ri(p,0) ={(¢ —I7,0 = (I = 1)), 7 € R}

and that

Ri(p,o)nC(l)y={(0—17°(1,0),0 — (I —1)7"(1,0))}.

Therefore, the function 7%(/, 0) is the time spent to go from a point (6, 0)
in the diagonal o = ¢ up to C(/) with a velocity vector v=—(/,/ —1).
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Second case: g(p,0), 0 =y Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of 7*(/, ) is
very important and useful.

0 /2 ™ 3m/2

27
3m/2

w/2

-7r/20

0 /2 ™ 3m/2

0

Figure: Going down along NHIM

lines Figure: The “lower” crest

Green zones: | increases under the scattering map.
Red zones: | decreases under the scattering map.
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Second case: g(p,0),0 =@ —s Kinds of scattering maps

2w

3m/2

a =S TS T TS A
- T —

/2

0

-m/2

0 /2 ™ 3m/2 ) /2 ™ 37/2
p 0

Figure: Going up along NHIM lines Figure: The “upper” crest
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Second case: g(p,0),0 =@ —s Kinds of scattering maps

27
3m/2

/2

0 /2 ™ 3r/2
0

Figure: Minimal |7*| between
Figure: Minimal time “lower” and “upper’ crest
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0 /2 ™ 3m/2 0
¥

Figure: Minimal |7*| between
Figure: First intersection Cm(l) and C (1)
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A case with 3 +1/2 d.o.f EELTESELENY

We consider an a priori Hamiltonian system

Hp.autos) = (B +eosqg—1) ) +<F(@)slo) (0

where | = (I, ), ¢ = (¢1,%2), f(q) =cosq, h(l) = Q112/2 + Q,13/2
and
g(p,s) = a1 cos 1 + ax cos o + a3 cosss. (7)

@ The unperturberd system cosists of a pendulum plus two rotors.

@ This is a direct generalization of the case cosidered in the first case.
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A case with 3+ 1/2 d.o.f G [l T TeT)

Theorem (Arnold diffusion for a two-parameter family)

Assume ajazaz # 0 and |a1/a3| + |a2/a3| < 0.625 in Hamiltonian (6)+(7).
Then, for any two actions |+ and any § there exists g > 0 such that for
every 0 < |e| < gq there exists an orbit X(t) and T > 0 such that

1(%(0) ~ 1| <6 and  [I(%(T)) — L] <6
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AN RV IS PN NN Bl Arnold diffusion

For |a1/a3| + |a2/a3] < 0.625 there are two horizontal crests Cy m(/), and
both scattering maps Sy, Sm are globally well defined.

Figure: Horizontal crests: a;/as = ax/as = 0.48 ,Q1h = Qo = 1.210.

—
L g

0
%,
EA 2 Py

Diffusing orbits are found by shadowing orbits of both scattering maps
scattering maps and the inner dynamics.

o N W & v o
©3

Remark

Actually, we can prove that given any two actions | and any path ~(s)
Joining them in the actions space, there exists an orbit X(t) such that
1(x(t)) is 0-close to y(V(t)) for some parameterization V.

Rodrigo G. Schaefer (UPC) Global Instability in Hamiltonian Systems GDIS 2018 38 / 40




A case with 3+ 1/2 d.o.f EEEH-UGIVENS

We define a Highway as an invariant set H = {(/,©(/))} of the
Hamiltonian given by the reduced Poincaré function £*(/, 6) which is
contained in the level energy £*(/,0) = As. It is therefore a Lagrangian
manifold, there exists a function F(/) such that ©(/) = VF(I).

Therefore,
001 005 . 9%F O?F

b ol "% 9ok ohob

Proposition

Consider the Hamiltonian (6)+(7). Assume ajazasz # 0 and
|ai/a3| + |a2/a3] < 0.625. For l and | close to infinity, the function F
takes the asymptotic form

2a; sinh(7/2)

FI) =S () — 3 22

i=1,2

(7T3w,-3 + 6ﬂ'2w,-2 + 247w; + 48) e Twi/2

+0O(w2wBemwitws)/2),

v

Rodrigo G. Schaefer (UPC) Global Instability in Hamiltonian Systems GDIS 2018 39 / 40




A case with 3+ 1/2 d.o.f EEEH-UGIVENS

Proposition

(Highways in a very special case) Consider the Hamiltonian (6)+(7) and
a; = ap = a satisfying 2 |a/as3| < 0.625 and Q; = Qp = Q.

Let O = {(1°,6°),...,(IN,6N)} be an orbit in a highway, N € N such
that 12 =19 and 09 = 63. Then, I =15 =1" and 0] = 05 = ' for any
i€{0,...,N} and can be described by

3(7) arccos Mi\%lf)(’_)) + @arccos(f(1)), 1<0;
"7 arccos '43(;%/-{)(7)) — @arccos(f(1)), 1>0;

or ) ) i
0 — arccos % — warccos(f (1)), 1<0;
) “arccos Mi‘%l—f)(_)) +@arccos(f(1)), 1>0;

where f(T) = ©As — /A3 + (& — 1)2A(T)/ [As(&? — 1)] and & = Q.

v
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Thank you very much.
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