Arnold diffusion for a complete family of perturbations with two independent harmonics Seminari UB-UPC

Amadeu Delshams Rodrigo G. Schaefer

Universitat Politècnica de Catalunya

October 18th, 2017

<ロト <四ト <注入 <注下 <注下 <

The a priori unstable system

The result

Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables (φ, s) :

$$H_{\varepsilon}(p,q,l,\varphi,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + \frac{l^2}{2} + \varepsilon h(q,\varphi,s)$$
(1)

 $h(q,\varphi,s) = f(q)g(\varphi,s),$ $f(q) = \cos q, \qquad g(\varphi,s) = a_1\cos(k_1\varphi + l_1s) + a_2\cos(k_2\varphi + l_2s),$ (2)
with $k_1, k_2, l_1, l_2 \in \mathbb{Z}.$

Theorem

Assume that $a_1a_2 \neq 0$ and $\begin{vmatrix} k_1 & k_2 \\ l_1 & l_2 \end{vmatrix} \neq 0$ in (1)-(2). Then, for any $I^* > 0$, there exists $\varepsilon^* = \varepsilon^*(I^*, a_1, a_2) > 0$ such that for any ε , $0 < \varepsilon < \varepsilon^*$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some T > 0

$$I(0) \leq -I^* < I^* \leq I(T).$$

- To review the construction of scattering maps initiated in [Delshams-Llave-Seara00], designed to detect global instability.
- To compute explicitly several scattering maps to prove global instability for the action I for any $\varepsilon > 0$ small enough.
- To estimate the time of diffusion in some cases (at least for $k_1 = l_2 = 1$ and $l_1 = k_2 = 0$).
- To play with the parameter $\mu = a_1/a_2$ to prove global instability for any value of $\mu \neq 0, \infty$.
- To describe bifurcations of the scattering maps.

It is easy to check that if

 $\Delta := k_1 l_2 - k_2 l_1 = 0$ or $a_1 = 0$ or $a_2 = 0$

there is no global instability for the variable I.

If $\Delta a_1 a_2 \neq 0$, after some rational linear changes in the angles, we only need to study two cases:

• The first (and easier) case [Delshams-S17]

$$g(arphi,s)=a_1\cosarphi+a_2\cos s$$

• The second case [Delshams-S17a]

$$g(\varphi,\sigma) = a_1 \cos \varphi + a_2 \cos \sigma,$$

where $\sigma = \varphi - s$.

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case $\varepsilon = 0$, the Hamiltonian H_0 is integrable formed by the standard pendulum plus a rotor

$$\mathcal{H}_0(\pmb{p},\pmb{q},\pmb{l},arphi,\pmb{s})=\pm\left(rac{\pmb{p}^2}{2}+\cos \pmb{q}-1
ight)+rac{\pmb{l}^2}{2}$$

I is constant:
$$\triangle I := I(T) - I(0) \equiv 0.$$

For any $0 < \varepsilon \ll 1$, there is a finite drift in the action of the rotor *I*: $\triangle I = O(1)$, so we have global instability.

In short, this is also frequently called Arnold diffusion.

Rodrigo G. Schaefer (UPC)

Arnold diffusion with 2 harmonics

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several Scattering maps and the Inner map, giving rise to diffusing pseudo-orbits.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14] for ensuring the existence of real orbits close to the pseudo-orbits.

We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\widetilde{\Lambda}$.

$$\widetilde{\mathsf{\Lambda}} = \{(\mathsf{0},\mathsf{0},\mathsf{I},arphi, \mathsf{s}); \mathsf{I} \in [-\mathsf{I}^*,\mathsf{I}^*], (arphi, \mathsf{s}) \in \mathbb{T}^2\}.$$

is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated 4D stable $W^{s}_{\varepsilon}(\widetilde{\Lambda})$ and unstable $W^{u}_{\varepsilon}(\widetilde{\Lambda})$ invariant manifolds.

- The *inner dynamics* is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The outer dynamics is the dynamics along the invariant manifolds to $\widetilde{\Lambda}$. (Scattering map)

Remark: Due to the form of the perturbation, $\widetilde{\Lambda} = \widetilde{\Lambda}_{\varepsilon}$.

Inner dynamics For the first case $g(\varphi, s)$

For the first case $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the inner dynamics is described by the Hamiltonian systems with the Hamiltonian

$$K(I, \varphi, s) = \frac{I^2}{2} + \varepsilon \left(a_1 \cos \varphi + a_2 \cos s\right).$$

In this case the inner dynamics is integrable.

Rodrigo G. Schaefer (UPC)

Inner dynamics

For $g(\varphi, \sigma)$, $\sigma = \varphi - s$

For $g(\varphi, \sigma)$, the inner dynamics is by the Hamiltonian

$$\mathcal{K}(I,\varphi,\sigma) = rac{I^2}{2} + \varepsilon \left(a_1 \cos \varphi + a_2 \cos \sigma
ight),$$

where $\sigma = \varphi - s$. The system associated to this Hamiltonian is not integrable and two resonances arise in I = 0 and I = 1.

Rodrigo G. Schaefer (UPC)

Outer dynamics Scattering map

Let Λ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ . A scattering map is a map S defined by $S(\tilde{x}_{-}) = \tilde{x}_{+}$ if there exists $\tilde{z} \in \Gamma$ satisfying

$$|\phi_t^{\varepsilon}(ilde{z}) - \phi_t^{\varepsilon}(ilde{x}_{\mp})| \longrightarrow 0 ext{ as } t \longrightarrow \mp \infty$$

that is, $W^{u}_{\varepsilon}(\tilde{x}_{-})$ intersects transversally $W^{s}_{\varepsilon}(\tilde{x}_{+})$ in \tilde{z} .

Outer dynamics Scattering map

S is symplectic and exact [Delshams-Llave-Seara08] and takes the form:

$$\mathcal{S}_{arepsilon}(I,arphi,oldsymbol{s}) = \left(I + arepsilon rac{\partial \mathcal{L}^*}{\partial heta}(I, heta) + \mathcal{O}(arepsilon^2), heta - arepsilon rac{\partial \mathcal{L}^*}{\partial I}(I, heta) + \mathcal{O}(arepsilon^2), oldsymbol{s}
ight),$$

where $\theta = \varphi - Is$ and $\mathcal{L}^*(I, \theta)$ is the Reduced Poincaré function, or more simply in the variables (I, θ) :

$$\mathcal{S}_{\varepsilon}(I, \theta) = \left(I + \varepsilon \, rac{\partial \mathcal{L}^*}{\partial \theta}(I, \theta) + \mathcal{O}(\varepsilon^2), \theta - \varepsilon \, rac{\partial \mathcal{L}^*}{\partial I}(I, \theta) + \mathcal{O}(\varepsilon^2)
ight),$$

- The variable s remains fixed under S_{ε} : it plays the role of a parameter
- Up to first order in ε , S_{ε} is the $-\varepsilon$ -time flow of the Hamiltonian $\mathcal{L}^*(I, \theta)$
- The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^*(I,\theta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\varepsilon}$

Proposition

Given $(I, arphi, s) \in [-I^*, I^*] imes \mathbb{T}^2$, assume that the real function

$$au \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi - I \, au, s - au) \in \mathbb{R}$$

has a non degenerate critical point au^* = au(I, arphi, s), where

$$\mathcal{L}(I,\varphi,s) = \int_{-\infty}^{+\infty} (\cos q_0(\sigma) - \cos 0) g(\varphi + I\sigma, s + \sigma; 0) d\sigma$$

Then, for $0 < |\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\tilde{\lambda}_{\varepsilon}$, which is ε -close to the point $\tilde{z}^*(I, \varphi, s) = (p_0(\tau^*), q_0(\tau^*), I, \varphi, s) \in W^0(\tilde{\lambda})$:

$$\tilde{z} = \tilde{z}(I,\varphi,s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), I,\varphi,s) \in W^u(\widetilde{\Lambda}_{\varepsilon}) \pitchfork W^s(\widetilde{\Lambda}_{\varepsilon}).$$

Outer dynamics The Melnikov Potential

In our model $q_0(t) = 4 \arctan e^t$, $p_0(t) = 2/\cosh t$ is the separatrix for positive p of the standard pendulum $P(q, p) = p^2/2 + \cos q - 1$.

• For $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,s) = A_1(I)\cos\varphi + A_2\cos s,$$

where
$$A_1(I) = rac{2 \pi I a_1}{\sinh\left(rac{I \pi}{2}
ight)}$$
 and $A_2 = rac{2 \pi a_2}{\sinh\left(rac{\pi}{2}
ight)}$.

• For $g(\varphi, \sigma) = a_1 \cos \varphi + a_2 \cos \sigma$ ($\sigma = \varphi - s$), the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,\sigma) = A_1(I)\cos\varphi + A_2(I)\cos\sigma,$$

where $A_1(I)$ is as before but now $A_2(I) = \frac{2(I-1)\pi a_2}{\sinh\left(\frac{(I-1)\pi}{2}\right)}$.

The Melnikov potentials are similar in both cases.

Figure: The Melnikov Potential, $\mu = a_1/a_2 = 0.6$, I = 1, $g(\varphi, s)$.

Rodrigo G. Schaefer (UPC)

Arnold diffusion with 2 harmonics

October 18th, 2017

Finally, the function $\mathcal{L}^*(I, \theta)$ can be defined:

Definition

The Reduced Poincaré function is

$$\mathcal{L}^*(I, heta) = \mathcal{L}(I,arphi - I \, au^*(I,arphi, m{s}), m{s} - au^*(I,arphi, m{s})),$$

where $\theta = \varphi - I s$.

Therefore the definition of $\mathcal{L}^*(I, \theta)$ depends on the function $\tau^*(I, \varphi, s)$.

From the Proposition given above, we look for τ^* such that $\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - I \tau^*, s - \tau^*) = 0.$

Different view-points for $au^* = au^*(I, arphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(I, \varphi, s) = \{(I, \varphi I \tau, s \tau), \tau \in \mathbb{R}\}.$
- Look for intersections between $R(I, \varphi, s) = \{(I, \varphi I \tau, s \tau), \tau \in \mathbb{R}\}$ and a crest which is a curve of equation

$$rac{\partial \mathcal{L}}{\partial au}(I, arphi - I au, s - au)|_{ au = 0} = 0.$$

Note that the crests are characterized by $\tau^*(I, \varphi, s) = 0$. The crests were introduced in [Delshams-Huguet11]. A similar construction appears in [Davletshin-Treschev16].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Definition - Crests [Delshams-Huguet11]

For each I, we call crest $\mathcal{C}(I)$ the set of curves in the variables (φ, s) of equation

$$I\frac{\partial \mathcal{L}}{\partial \varphi}(I,\varphi,s) + \frac{\partial \mathcal{L}}{\partial s}(I,\varphi,s) = 0.$$
(3)

which in our case can be rewritten as

$$g(\varphi, s): \ \mu\alpha(I) \sin \varphi + \sin s = 0, \qquad \text{with } \alpha(I) = \frac{l^2 \sinh(\frac{\pi}{2})}{\sinh(\frac{\pi}{2})}, \quad \mu = \frac{a_1}{a_2}.$$
$$g(\varphi, \sigma = \varphi - s): \ \mu\alpha(I) \sin \varphi + \sin \sigma = 0, \qquad \text{with } \alpha(I) = \frac{l^2 \sinh(\frac{(l-1)\pi}{2})}{(l-1)^2 \sinh(\frac{\pi}{2})}, \quad \mu = \frac{a_1}{a_2}.$$

- For any *I*, the critical points of the Melnikov potential L(*I*, ·, ·) ((0, 0), (0, π), (π, 0) and (π, π): one maximum, one minimum point and two saddle points) always belong to the crest C(*I*).
- $\mathcal{L}^*(I, \theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta = \varphi Is$ is constant on the NHIM line $R(I, \varphi, s)$

Geometrical interpretation

Figure: Level curves of \mathcal{L} for $\mu = a_1/a_2 = 0.5$, I = 1.2 and $g(\varphi, s)$.

October 18th, 2017

Understanding the behavior of the crests $$\downarrow$$ Understanding the behavior of the Reduced Poincaré function $$\downarrow$$ Understanding the Scattering map

Rodrigo G. Schaefer (UPC)

Arnold diffusion with 2 harmonics

October 18th, 2017

- ∢ ⊒ ▶

First case: $g(\varphi, s)$ $0 < |\mu| < 0.97$

• For $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{M,m}(I)$ parameterized by:

$$s = \xi_M(I, \varphi) = -\arcsin(\mu\alpha(I)\sin\varphi) \mod 2\pi$$

$$\xi_m(I, \varphi) = \arcsin(\mu\alpha(I)\sin\varphi) + \pi \mod 2\pi$$
(4)

They are "horizontal" crests

3

First case: $g(\varphi, s)$ $0 < |\mu| < 0.625$

- For each *I*, the NHIM line *R*(*I*, φ, s) and the crest C_{M,m}(*I*) has only one intersection point.
- The scattering map S_M associated to the intersections between C_M(I) and R(I, φ, s) is well defined for any φ ∈ T. Analogously for S_m, changing M to m. In the variables (I, θ = φ − Is), both scattering maps S_M, S_m are globally well defined.

First case: $g(\varphi, s) = 0.625 < |\mu|$

- There are tangencies between C_{M,m}(I, φ) and R(I, φ, s). For some value of (I, φ, s), there are 3 points in R(I, φ, s) ∩ C_{M,m}(I).
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

Rodrigo G. Schaefer (UPC)

Arnold diffusion with 2 harmonics

October 18th, 2017

3

(d) Zoom where the scattering maps are different

Figure: Level curves of
$$\mathcal{L}^*_M(I, \theta)$$
, $\mathcal{L}^{*(1)}_M(I, \theta)$ and $\mathcal{L}^{*(2)}_M(I, \theta)$

Rodrigo G. Schaefer (UPC)

< □ > < ≥ > < ≥ >
October 18th, 2017

- 3

First case: $g(\varphi, s)$ $|\mu| > 0.97$

• For some values of I, $|\mu\alpha(I)| > 1$, the two crests $C_{M,m}$ are parameterized by:

$$\varphi = \eta_M(I, s) = -\arcsin(\mu\alpha(I)\sin s) \mod 2\pi$$

$$\eta_m(I, s) = \arcsin(\mu\alpha(I)\sin s) + \pi \mod 2\pi$$
(5)

They are "vertical" crests

3

First case: $g(\varphi, s)$ $|\mu| > 0.97$

For the values of *I* for which horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

Figure: The level curves of $\mathcal{L}^*_{\mathsf{M}}(I, \theta)$, $\mu = 1.5$.

In green, the region where the scattering map $S_{\rm M}$ is not defined.

Definition: Highways

Highways are the level curves of \mathcal{L}^* such that

$$\mathcal{L}^*(I, heta) = rac{2\pi a_1}{\sinh(\pi/2)}.$$

- The highways are "vertical" in the variables (φ, s)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu = a_1/a_2$)
- The highways give rise to fast diffusing pseudo-orbits

First case: $g(\varphi, s)$ Highways

Figure: The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^*(I,\theta)$

October 18th, 2017

- 3

Figure: In red: Inner map, blue: Scattering map, black: Highways, $\mu = 1.5$.

First case: $g(\varphi, s)$ Time of diffusion

An estimate of the total time of diffusion between $-I^*$ and I^* , along the highway, is

$$T_{\rm d} = rac{T_{
m s}}{arepsilon} \left[2 \log \left(rac{C}{arepsilon}
ight) + \mathcal{O}(arepsilon^b)
ight], ext{ for } arepsilon o 0, ext{ where } 0 < b < 1,$$

with

$$T_{\rm s} = T_{\rm s}(I^*, a_1, a_2) = \int_0^{I^*} \frac{-\sinh(\pi I/2)}{\pi a_1 I \sin \psi_{\rm h}(I)} dI,$$

where $\psi_{h} = \theta - I\tau^{*}(I, \theta)$ is the parameterization of the highway $\mathcal{L}^{*}(I, \psi_{h}) = A_{2}$, and

$$C = C(I^*, a_1, a_2) = 16 |a_1| \left(1 + \frac{1.465}{\sqrt{1 - \mu^2 A^2}}\right)$$

where $A = \max_{I \in [0, I^*]} \alpha(I)$, with $\alpha(I) = \frac{\sinh(\frac{\pi}{2})I^2}{\sinh(\frac{\pi}{2})}$ and $\mu = a_1/a_2$. Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01] and quantifies the general optimal diffusion estimate $\mathcal{O}\left(\frac{1}{s}\log\frac{1}{s}\right)$ of [Berti-Biasco-Bolle03] and [Treschev04].

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

In the second case:

- For $|\mu\alpha(I)| < 1$, there are two crests $C_{M,m}(I)$ parameterized by $\sigma = \xi_M(I, \varphi)$ and $\xi_m(I, \varphi)$. For $|\mu\alpha(I)| > 1$, $C_{M,m}(I)$ parameterized by $\varphi = \eta_M(I, \sigma)$ and $\eta_m(I, \sigma)$. The crests lie on the plane (φ, σ)
- There are no Highways.
- For any value of $\mu = a_1/a_2$ is possible to find I_h and I_v such that for $I = I_h$ the crests are horizontal and for $I = I_v$ the crests are vertical.
- For any value of μ there exists I such that the crests and some NHIM line are tangent. There are always multiple scattering maps

30 / 35

Second case: $g(\varphi, \sigma), \sigma = \varphi - s$ Computation of τ^*

From the definitions of $R(I, \varphi, s)$ and C(I), we have

$$R(I,\varphi,s)\cap \mathcal{C}(I) = \{(I,\varphi-I\tau^*(I,\varphi,s),s-\tau^*(I,\varphi,s))\}.$$

Introducing

$$au^*(I, heta):= au^*(I,arphi-Is,0), \quad ext{ with } heta=arphi-Is=(1-I)arphi+I\sigma,$$

one can see that on the plane ($\varphi, \sigma = \varphi - s$), the NHIM lines take the form

$${\sf R}_{\sf I}(arphi,\sigma)=\{(arphi-{\sf I} au,\sigma-({\sf I}-1) au), au\in\mathbb{R}\}$$

and that

$$R_{I}(\varphi,\sigma)\cap \mathcal{C}(I)=\{(\theta-I\tau^{*}(I,\theta),\theta-(I-1)\tau^{*}(I,\theta))\}.$$

Therefore, the function $\tau^*(I,\theta)$ is the time spent to go from a point (θ,θ) in the diagonal $\sigma = \varphi$ up to $\mathcal{C}(I)$ with a velocity vector $\mathbf{v} = -(I, I - 1)$.

= 990

Second case: $g(\varphi, \sigma), \sigma = \varphi - s$ Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of $\tau^*(I,\theta)$ is very important and useful.

Rodrigo G. Schaefer (UPC)

Arnold diffusion with 2 harmonics

October 18th, 2017

Second case: $g(arphi,\sigma),\,\sigma=arphi-s$

Kinds of scattering maps

Figure: Going up along NHIM lines

Figure: The "upper" crest

- ∢ ⊒ →

3

Second case: $g(\varphi, \sigma), \sigma = \varphi - s$

Kinds of scattering maps

Figure: Minimal time

Figure: Minimal $|\tau^*|$ between "lower" and "upper" crest

Rodrigo G. Schaefer (UPC)

3 October 18th, 2017

- ∢ ≣ →

3

In this picture we show a combination of 3 scattering maps.

3

Moltes gràcies

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

- Berti, Biasco, Bolle. Drift in phase space: a new variational mechanism with optimal diffusion time. *J. Math. Pures Appl.* 2003.
- Delshams, de la LLave , Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of T². Comm. Math. Phys.. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model. *Mem. Amer. Math. Soc.*. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion. *Advances in Mathematics*. 2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. *Nonlinearity*. 2009.

- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equations. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations. Regular and Chaotics Dynamics. 2017.
- Delshams, Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Arxiv. 2017.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. arXiv . 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity . 2004.