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Global instability

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

H(q,p,1,¢) = ho(q,p,1) +chi(q,p, 1, ¢, t). (1)
For e =0,
j = Oho
=

There exists a global instability in the variable / if for a € # 0, there exists
an orbit of the system (1) such that

= 0 = | = constant. (2)

A= |I(T) = 1(0)] = O(1). (3)
This instability is also called Arnold diffusion.
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Arnold example The origin

In 1964, V.I. Arnold proposed an example of a nearly-integrable
Hamiltonian with 2 + 1/2 degrees of freedom

1 .
H(q,p, e, 1,t) = 5 (p2 + /2) +e(cosqg — 1) (1 + p(sin + cos t)),

and asserted that given any §, K > 0, for any 0 < p < € < 0, there exists
a trajectory of this Hamiltonian system such that

I(0) <0 and I(T) > K for some time T > 0.

Notice that this a global instability result for the variable /, since
| = —Z— = —eu(cos g — 1) cos

is zero for € = 0, so | remains constant, whereas / can have a drift of
finite size for any € > 0 small enough.
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Arnold example The origin

Arnold’s Hamiltonian can be written as a nearly-integrable autonomous
Hamiltonian with 3 degrees of freedom

H*(q,p,p,1,s,A) = (p2 + 12) +A+e(cosqg—1)(1+ p(sinp + coss)),

N =

which for € = 0 is an integrable Hamiltonian h(p, I, A) = % (p2 + I2) + A.
Since h satisfies the (Arnold) isoenergetic nondegeneracy

——1#0

D?h Dh
DhT 0

By the KAM theorem proven by Arnold in 1963, the 5D phase space of H
is filled, up to a set of relative measure O(/) , with 3D-invariant tori 7T,
with Diophantine frequencies w = (w1, w2, 1):

|kiwi + kowo + ko| > ~v/|k|™ for any 0 # (ki, ko, ko) € Z,

where v = O(v/%), and 7 > 2.
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The a priori unstable system The result

Consider a pendulum and two s plus a time periodic perturbation
depending on three harmonics in the variables ¢ = (1, p2) and s:

’ oA
Hs(PaQ,/,QD,S)::I:<p2+c05q_1>+ 121 + 222

+¢eh(q,»,s) (4)

h(q, . s) = f(q)g(y,s),
f(q) = cosgq, g(p,s) = a1 cos 1 + ax cos gy + az cosss.

Theorem

Consider the Hamiltonian (4)+(5). Assume ajazaz # 0 and

|a1/as| + |a2/a3| < 0.625. Then, for every § < 1 and R > 0 there exists
g0 > 0 such that for every 0 < |g| < €, given |l+| < R, there exists an
orbit X(t) and T > 0, such that

1(Z(0)) — I_| <6 and |I(X(T)) - 14| <.

v
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The a priori unstable system Goals

@ To review the construction of scattering maps initiated in
[Delshams-Llave-Seara00], designed to detect global instability.

e To play with the parameter 3 = a;1/as and pp = ap/as to show their
influence in our mechanism.

@ To present some diffusion results for this concrete model with 34 1/2
degrees of freedom.
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The a priori unstable system The unperturbed system

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case € = 0, the Hamiltonian Hp is integrable formed by
the standard pendulum plus two rotors

’ W2 QB
HO(pvan;SD,S)::l:<pz—{—Cosq_1>+ 121 + 222

I = (h, k) is constant: ~ Al:=|I(T)—1(0)| = 0. )

For any 0 < € < 1, there is a finite drift in the action of the rotor /:
Al = O(1), so we have global instability.

In short, this is is also frequently called Arnold diffusion.
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The a priori unstable system Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:
@ To construct iterates under several Scattering maps and the Inner
map, giving rise to diffusing pseudo-orbits.

@ To use previous results about Shadowing [Fontich-Martin00],
[Gidea-Llave-Searal4] for ensuring the existence of real orbits close to
the pseudo-orbits.
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An example of pseudo-orbit

As an illustration of our mechanics, we show an example for 2 +1/2
degrees of freedom:

2

2
H:(p,q,l,p) =+ <pQ+cosq— 1) —i—E—I—scosq(,ucosgochoss).

This case was studied in [Delshams - S. 2017].

u=l5"

s=0 .

v
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An example of pseudo-orbit Two dynamics in the NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics on a large invariant object A.

K = {(0’0’ I’SO’S); I e [_l*’ /*]27(@7 S) € T3}

is a 5D Normally Hyperbolic Invariant Manifold (NHIM) with associated
6D stable WZ(A) and unstable WY(A) invariant manifolds.

@ The inner dynamics is the dynamics restricted to A. (Inner map)

@ The outer dynamics is the dynamics along the invariant manifolds of
A. (Scattering map)

Remark: Due to the form of the perturbation, A = A. (not essential).
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Inner dynamics

As we have g(p,s) = aj cos g + a cos pp + az cos s, the inner dynamics
is described by the Hamiltonian system with the Hamiltonian

Q12 i3
K(l,¢,s) = 5 T3 + e (a1 cos 1 + a2 cos @y + a3€05S) .

In this case the inner dynamics is integrable.

3
| E— |
e X
17— |
-3
-5 -5
0 s 27 0 s 27
1 @2
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Outer dynamics Scattering map

Let A be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold I'. A scattering map is a map S defined by
S(X_) = X4 if there exists Z € T satisfying

|65(2) — p5(X¢)| — Oast — Foo

that is, WX(X_) intersects transversally W2(X;) in Z.

o'r(x_) =

Q. (z)=x. s
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Outer dynamics Scattering map

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

* *

(1,6) + O(c2),0 — ¢ ‘9(; (1,6) + O(2), s) ,

oL
S.(1,¢,5) = <I+5 50

where 8 = ¢ — Is and L£*(/, ) is the Reduced Poincaré function, or more simply
in the variables (/,0):

oL*
06

(1,6) + 0E).0 = (1.0 + 0())

S.(1,0) = (/ te

@ The variable s remains fixed under S.: it plays the role of a parameter
@ Up to first order in €, S, is the —e-time flow of the Hamiltonian £*(/, 0)

@ The scattering map jumps O(e) distances along the level curves of L*(/,0)

Now, we are going to construct the Reduced Poincaré function £*.
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To get a scattering map we search for homoclinic orbits to A.
Proposition

Given (I,¢,s) € [—1*,1*]* x T3, assume that the real function
TeER+— L(I,p—IT,s—7) €R

has a non degenerate critical point 7* = 7(/, ¢, s), where

+oo
LI, p,8) = / (cos qo(0) — cos0) g(w + lo, s + 0;0)do.

Then, for 0 < |e| small enough, there exists a transversal homoclinic point Z to
A-, which is e-close to the point 2*(1,¢,s) = (po(7*), go(7*), 1,0, 5) € WO(A):

2= 2(1,0,5) = (po(r") + 0(c), qo(r") + O(e), I, 0, 5) € W(A.) h W3(A.).

v
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In our model qo(t) = 4arctane!, po(t) = 2/cosh t is the separatrix for
positive p of the standard pendulum P(q,p) = p?/2 + cosq — 1.

For our g(p,s) = aj cos gy + az cos vy + a3 cos s, the Melnikov potential
becomes

L(1,¢,s) = A1(h) cos p1 + Az(h) cos v + Az cosss,

27TQ,‘I,'3,' 27Ta3

where Aj(l;)= ——F—,i={1,2} and A3 = ———~
sinh (ng)

sinh (%)
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Outer dynamics Reduced Poincaré function

Finally, the function £*(/,0) can be defined:

Definition
The Reduced Poincaré function is

L£(1,0)=L(l,o—17"(1,0,5),s —7(],0,5)),

where 6 = ¢ — I s.

Therefore the definition of L*(/,0 = ¢ — Is) depends on the function

(1, ¢, 5).
So, we need to calculate 7* to obtain the L£*.
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From the Proposition given above, we look for 7* such that
g—f(/,go— I7*,s—71*)=0.

Different view-points for 7% = 7*(/, ¢, s)
@ Look for critical points of £ on the straight line, called NHIM line
R(l,¢,s)={(l,p—I71,5s—71), T € R}
@ Look for intersections between
R(l,¢,s) ={(l,o— 17,5 —7), 7 € R} and a crest which is a surface

of equation
gf(l,cp —I7,5 = T)|r=0 =0.

Note that the crests are characterized by 7*(/, ¢, s) = 0.
The crests were introduced in [Delshams-Huguet11]. A similar
construction appears in [Davletshin-Treschev16].
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Outer dynamics Crests

Definition - Crests [Delshams-Huguet11]

For each I, we call crest C(!) the set of surfaces in the variables (¢, s) of equation
<(wa 1) : v((p,s)['*(l: @, 5)> = 07 (6)

where wij = Q,'/,'.

which in our case can be rewritten as

pia(wr) sin i + poa(ws) sin w2 + sins = 0,

where p; = aj/as and
w7 sinh(%)

a(wi) = W

@ L*(/,0) is nothing else but £ evaluated on the crest C(/).
@ 0 = ¢ — Is is constant on the NHIM line R(/, ¢, s)
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Outer dynamics Crests

Understanding the behavior of the crests

4

Understanding the behavior of the Reduced Poincaré function

4

Understanding the Scattering map
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Classification of the crests EUEITESIAREIXT/

@ For |ua(l)| < 1, there are two crests Cu,m(/) parameterized by:

s = f/\/l(l
fm(l,

= —arcsin(puia(wr)sin 1 + poa(ws) sin p2) mod 27 (7)

P
p) = arcsin(uia(wi)sing: + poa(w2) sinp2) + mod 27

L.

/2 p k) 3nfs
2T

—r

3r/2
8
/2
0

0

They are “horizontal” crests J
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Classification of the crests EUEITESIAREIXT/

For 0 < || + |pe2| < 0.625:

@ For each /, the NHIM line R(/, p,s) and the crest Cm,m(/) has only one
intersection point.

@ The scattering map Sw associated to the intersections between Cum(/) and
R(I,¢,s) is well defined for any ¢ € T. Analogously for Sm, changing M to m. In
the variables (/,0 = ¢ — Is), both scattering maps Sm, Sm are globally well defined.

For 0.625 < |p1] + |p2| < 0.97:

@ There are tangencies between Cum(/,¢) and R(I, ¢, s). For some value of
(1, ¢,s), there are 3 points in R(/,¢,s) N Cym(/).

@ This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)
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Classification of the crests [IKTENITHESITY

For |u1|, |p2| < 0.97:
@ The crests C(/) are horizontal or unseparated.

@ For some value of [ there are NHIM lines which are tangent to the crests. Again,
we have multiple scattering maps.

“Unseparated” crests J
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Classification of the crests [IKTENITHESITY

For 0.97 < |u1] or 0.97 < |u2|

@ The crests C(/) can be horizontal, vertical or unseparated

@ For some value of | there are NHIM lines which are tangent to the crests.

Example of “vertical” crests )
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Arnold diffusion General diffusion

Theorem (Arnold diffusion for a two-parameter family)

Consider the Hamiltonian (4)+(5). Assume ajazasz # 0 and

|ai/a3| + |a2/a3] < 0.625. Then, for every 6 < 1 and R > O there exists
g0 > 0 such that for every 0 < |e| < g9, given |l+| < R, there exists an
orbit X(t) and T > 0, such that

1(%(0)) — -] <6 and |I(X(T)) — 1| <.

Remark

Actually, we can prove that given any two actions | and any path ~(s)
Joining them in the actions space, there exists an orbit X(t) such that
1(X(t)) is d-close to (W(t)) for some parameterization V.
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Arnold diffusion Highways

We define a Highway as an invariant set H = {(/,©(/))} of the
Hamiltonian given by the reduced Poincaré function £*(/, 8) which is
contained in the level energy £*(/,0) = As. It is therefore a Lagrangian
manifold, there exists a function F(/) such that ©(/) = VF(I).

Therefore,
001 005 . 9%F O?F

b ol "% 9ok ohob

Proposition

Consider the Hamiltonian (4)+(5). Assume ajazasz # 0 and
|ai/a3| + |a2/a3] < 0.625. For l and | close to infinity, the function F
takes the asymptotic form

2a; sinh(7/2)

FI) =S () — 3 22

i=1,2

(7T3w,-3 + 6ﬂ'2w,-2 + 247w; + 48) e Twi/2

+0O(w2wBemwitws)/2),

v
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Arnold diffusion Highways

I ! . .
—8 —6 —4 -2 0

Figure: Dynamics inside the highway. Parameter values are a; = 0.3, a, = 0.1,
agzland 91292:1.
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Arnold diffusion Highways

Proposition

Assume ajazas # 0 and |a1/as| + |a2/a3| < 0.625 in Hamiltonian (4)+(5).
Let (1",©(1")) a Highway. For h, I > 1, we have

and for b, | < —1,
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Arnold diffusion Time of diffusion

Theorem
The time of diffusion T4 close to a highway of Hamiltonian (4)+(5) with

|a1/as| + |a2/a3| < 0.625 between I? and If satisfies the following
asymptotic expression

T. C
T, = ?5 [2 log <5> + (’)(&:b)] , fore = 0, where 0 < b < 1, (8)

with

1 /wf — sinh(7w1 /2)dw;
s 27T3191 wo w1 sin(91 — wlT*) ’

where wg = Qlllo and wr= Q1l¢, and

2sinh(7/2) ||
[1 —1.466(|pua| + |2
2sinh(7/2) |p1]
el a6+ (D] e ] 2~ B
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Grazie mille.
Thank you very much.
Moltes gracies.
Tack sd mycket.
Muchas gracias.

Muito obrigado.
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