Arnold diffusion for a Hamiltonian with $3+1 / 2$ degrees of freedom

Amadeu Delshams ${ }^{1}$ Albert Granados ${ }^{1}$ Rodrigo G. Schaefer ${ }^{2}$

${ }^{1}$ Universitat Politècnica Catalunya
${ }^{2}$ Uppsala Universitet

Milan, February $4^{\text {th }}, 2020$
I-CELMECH Training School

Global instability

What is Global instability in Hamiltonian systems?
Assume a Hamiltonian system given by the Hamiltonian:

$$
\begin{equation*}
H(q, p, l, \varphi)=h_{0}(q, p, I)+\varepsilon h_{1}(q, p, l, \varphi, t) \tag{1}
\end{equation*}
$$

For $\varepsilon=0$,

$$
\begin{equation*}
i=\frac{\partial h_{0}}{\partial \varphi}=0 \Rightarrow I=\text { constant } \tag{2}
\end{equation*}
$$

There exists a global instability in the variable I if for a $\varepsilon \neq 0$, there exists an orbit of the system (1) such that

$$
\begin{equation*}
\triangle I:=|I(T)-I(0)|=\mathcal{O}(1) \tag{3}
\end{equation*}
$$

This instability is also called Arnold diffusion.

Table of contents

(1) Arnold example
(2) The a priori unstable system
(3) An example of pseudo-orbit
(4) Inner dynamics
(5) Outer dynamics
(6) Classification of the crests
(7) Arnold diffusion

The origin

In 1964, V.I. Arnold proposed an example of a nearly-integrable Hamiltonian with $2+1 / 2$ degrees of freedom

$$
H(q, p, \varphi, I, t)=\frac{1}{2}\left(p^{2}+I^{2}\right)+\varepsilon(\cos q-1)(1+\mu(\sin \varphi+\cos t))
$$

and asserted that given any $\delta, K>0$, for any $0<\mu \ll \varepsilon \ll 0$, there exists a trajectory of this Hamiltonian system such that

$$
I(0)<\delta \text { and } I(T)>K \quad \text { for some time } T>0
$$

Notice that this a global instability result for the variable I, since

$$
i=-\frac{\partial H}{\partial \varphi}=-\varepsilon \mu(\cos q-1) \cos \varphi
$$

is zero for $\varepsilon=0$, so I remains constant, whereas I can have a drift of finite size for any $\varepsilon>0$ small enough.

Arnold example

The origin

Arnold's Hamiltonian can be written as a nearly-integrable autonomous Hamiltonian with 3 degrees of freedom
$H^{*}(q, p, \varphi, I, s, A)=\frac{1}{2}\left(p^{2}+I^{2}\right)+A+\varepsilon(\cos q-1)(1+\mu(\sin \varphi+\cos s))$,
which for $\varepsilon=0$ is an integrable Hamiltonian $h(p, I, A)=\frac{1}{2}\left(p^{2}+I^{2}\right)+A$. Since h satisfies the (Arnold) isoenergetic nondegeneracy

$$
\left.\begin{array}{cc}
D^{2} h & D h \\
D h^{\top} & 0
\end{array} \right\rvert\,=-1 \neq 0
$$

By the KAM theorem proven by Arnold in 1963, the 5D phase space of H is filled, up to a set of relative measure $\mathrm{O}(\sqrt{\varepsilon})$, with 3D-invariant tori \mathcal{T}_{ω} with Diophantine frequencies $\omega=\left(\omega_{1}, \omega_{2}, 1\right)$:

$$
\left|k_{1} \omega_{1}+k_{2} \omega_{2}+k_{0}\right| \geq \gamma /|k|^{\tau} \text { for any } 0 \neq\left(k_{1}, k_{2}, k_{0}\right) \in \mathbb{Z}
$$

where $\gamma=\mathrm{O}(\sqrt{\varepsilon})$, and $\tau \geq 2$.

Consider a pendulum and two s plus a time periodic perturbation depending on three harmonics in the variables $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ and s :

$$
\begin{gather*}
H_{\varepsilon}(p, q, l, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{\Omega_{1} l_{1}^{2}}{2}+\frac{\Omega_{2} l_{2}^{2}}{2}+\varepsilon h(q, \varphi, s) \tag{4}\\
h(q, \varphi, s)=f(q) g(\varphi, s) \tag{5}\\
f(q)=\cos q, \quad g(\varphi, s)=a_{1} \cos \varphi_{1}+a_{2} \cos \varphi_{2}+a_{3} \cos s
\end{gather*}
$$

Theorem

Consider the Hamiltonian (4)+(5). Assume $a_{1} a_{2} a_{3} \neq 0$ and $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$. Then, for every $\delta<1$ and $R>0$ there exists $\varepsilon_{0}>0$ such that for every $0<|\varepsilon|<\varepsilon_{0}$, given $\left|I_{ \pm}\right| \leq R$, there exists an orbit $\tilde{x}(t)$ and $T>0$, such that

$$
\left|I(\tilde{x}(0))-I_{-}\right| \leq \delta \quad \text { and } \quad\left|I(\tilde{x}(T))-I_{+}\right| \leq \delta
$$

Goals

- To review the construction of scattering maps initiated in [Delshams-Llave-Seara00], designed to detect global instability.
- To play with the parameter $\mu_{1}=a_{1} / a_{3}$ and $\mu_{2}=a_{2} / a_{3}$ to show their influence in our mechanism.
- To present some diffusion results for this concrete model with $3+1 / 2$ degrees of freedom.

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].
In the unperturbed case $\varepsilon=0$, the Hamiltonian H_{0} is integrable formed by the standard pendulum plus two rotors

$$
\begin{gathered}
H_{0}(p, q, I, \varphi, s)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{\Omega_{1} I_{1}^{2}}{2}+\frac{\Omega_{2} I_{2}^{2}}{2} . \\
I=\left(I_{1}, I_{2}\right) \text { is constant: } \triangle I:=|I(T)-I(0)| \equiv 0 .
\end{gathered}
$$

For any $0<\varepsilon \ll 1$, there is a finite drift in the action of the rotor I : $\Delta I=\mathcal{O}(1)$, so we have global instability.

In short, this is is also frequently called Arnold diffusion.

Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several Scattering maps and the Inner map, giving rise to diffusing pseudo-orbits.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14] for ensuring the existence of real orbits close to the pseudo-orbits.

An example of pseudo-orbit

As an illustration of our mechanics, we show an example for $2+1 / 2$ degrees of freedom:

$$
H_{\varepsilon}(p, q, I, \varphi)= \pm\left(\frac{p^{2}}{2}+\cos q-1\right)+\frac{l^{2}}{2}+\varepsilon \cos q(\mu \cos \varphi+\cos s) .
$$

This case was studied in [Delshams - S. 2017].

We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\widetilde{\Lambda}$.

$$
\widetilde{\Lambda}=\left\{(0,0, l, \varphi, s) ; I \in\left[-I^{*}, I^{*}\right]^{2},(\varphi, s) \in \mathbb{T}^{3}\right\}
$$

is a 5D Normally Hyperbolic Invariant Manifold (NHIM) with associated 6D stable $W_{\varepsilon}^{s}(\widetilde{\Lambda})$ and unstable $W_{\varepsilon}^{u}(\widetilde{\Lambda})$ invariant manifolds.

- The inner dynamics is the dynamics restricted to $\tilde{\Lambda}$. (Inner map)
- The outer dynamics is the dynamics along the invariant manifolds of $\widetilde{\Lambda}$. (Scattering map)
Remark: Due to the form of the perturbation, $\widetilde{\Lambda}=\widetilde{\Lambda}_{\varepsilon}$ (not essential).

Inner dynamics

As we have $g(\varphi, s)=a_{1} \cos \varphi_{1}+a_{2} \cos \varphi_{2}+a_{3} \cos s$, the inner dynamics is described by the Hamiltonian system with the Hamiltonian

$$
K(I, \varphi, s)=\frac{\Omega_{1} I_{1}^{2}}{2}+\frac{\Omega_{2} I_{2}^{2}}{2}+\varepsilon\left(a_{1} \cos \varphi_{1}+a_{2} \cos \varphi_{2}+a_{3} \cos 5\right) .
$$

In this case the inner dynamics is integrable.

Let $\widetilde{\Lambda}$ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ. A scattering map is a map S defined by $S\left(\tilde{x}_{-}\right)=\tilde{x}_{+}$if there exists $\tilde{z} \in \Gamma$ satisfying

$$
\left|\phi_{t}^{\varepsilon}(\tilde{z})-\phi_{t}^{\varepsilon}\left(\tilde{x}_{\mp}\right)\right| \longrightarrow 0 \text { as } t \longrightarrow \mp \infty
$$

that is, $W_{\varepsilon}^{u}\left(\tilde{x}_{-}\right)$intersects transversally $W_{\varepsilon}^{s}\left(\tilde{x}_{+}\right)$in \tilde{z}.

S is an exact symplectic map [Delshams-Llave-Seara08] and takes the form:

$$
S_{\varepsilon}(I, \varphi, s)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), s\right),
$$

where $\theta=\varphi-I s$ and $\mathcal{L}^{*}(I, \theta)$ is the Reduced Poincaré function, or more simply in the variables (I, θ) :

$$
\mathcal{S}_{\varepsilon}(I, \theta)=\left(I+\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial \theta}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right), \theta-\varepsilon \frac{\partial \mathcal{L}^{*}}{\partial I}(I, \theta)+\mathcal{O}\left(\varepsilon^{2}\right)\right),
$$

- The variable s remains fixed under S_{ε} : it plays the role of a parameter
- Up to first order in $\varepsilon, \mathcal{S}_{\varepsilon}$ is the - ε-time flow of the Hamiltonian $\mathcal{L}^{*}(I, \theta)$
- The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^{*}(I, \theta)$ Now, we are going to construct the Reduced Poincaré function \mathcal{L}^{*}.

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\varepsilon}$

Proposition

Given $(I, \varphi, s) \in\left[-I^{*}, I^{*}\right]^{2} \times \mathbb{T}^{3}$, assume that the real function

$$
\tau \in \mathbb{R} \longmapsto \mathcal{L}(I, \varphi-I \tau, s-\tau) \in \mathbb{R}
$$

has a non degenerate critical point $\tau^{*}=\tau(I, \varphi, s)$, where

$$
\mathcal{L}(I, \varphi, s)=\int_{-\infty}^{+\infty}\left(\cos q_{0}(\sigma)-\cos 0\right) g(\varphi+I \sigma, s+\sigma ; 0) d \sigma .
$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε-close to the point $\tilde{z}^{*}(l, \varphi, s)=\left(p_{0}\left(\tau^{*}\right), q_{0}\left(\tau^{*}\right), l, \varphi, s\right) \in W^{0}(\widetilde{\Lambda})$:

$$
\tilde{z}=\tilde{z}(I, \varphi, s)=\left(p_{0}\left(\tau^{*}\right)+O(\varepsilon), q_{0}\left(\tau^{*}\right)+O(\varepsilon), I, \varphi, s\right) \in W^{u}\left(\widetilde{\Lambda}_{\varepsilon}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{\varepsilon}\right)
$$

In our model $q_{0}(t)=4 \arctan \mathrm{e}^{t}, p_{0}(t)=2 / \cosh t$ is the separatrix for positive p of the standard pendulum $P(q, p)=p^{2} / 2+\cos q-1$. For our $g(\varphi, s)=a_{1} \cos \varphi_{1}+a_{2} \cos \varphi_{2}+a_{3} \cos s$, the Melnikov potential becomes

$$
\mathcal{L}(I, \varphi, s)=A_{1}\left(I_{1}\right) \cos \varphi_{1}+A_{2}\left(I_{2}\right) \cos \varphi_{2}+A_{3} \cos s
$$

where $A_{i}\left(I_{i}\right)=\frac{2 \pi \Omega_{i} I_{i} a_{i}}{\sinh \left(\frac{\Omega_{i} I_{i} \pi}{2}\right)}, i=\{1,2\}$ and $A_{3}=\frac{2 \pi a_{3}}{\sinh \left(\frac{\pi}{2}\right)}$.

Finally, the function $\mathcal{L}^{*}(I, \theta)$ can be defined:
Definition
The Reduced Poincaré function is

$$
\mathcal{L}^{*}(I, \theta)=\mathcal{L}\left(I, \varphi-I \tau^{*}(I, \varphi, s), s-\tau^{*}(I, \varphi, s)\right)
$$

where $\theta=\varphi-I s$.

Therefore the definition of $\mathcal{L}^{*}(I, \theta=\varphi-I s)$ depends on the function $\tau^{*}(I, \varphi, s)$.
So, we need to calculate τ^{*} to obtain the \mathcal{L}^{*}.

From the Proposition given above, we look for τ^{*} such that $\frac{\partial \mathcal{L}}{\partial \tau}\left(I, \varphi-I \tau^{*}, s-\tau^{*}\right)=0$.

Different view-points for $\tau^{*}=\tau^{*}(I, \varphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(I, \varphi, s)=\{(I, \varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$.
- Look for intersections between
$R(I, \varphi, s)=\{(I, \varphi-I \tau, s-\tau), \tau \in \mathbb{R}\}$ and a crest which is a surface of equation

$$
\left.\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi-I \tau, s-\tau)\right|_{\tau=0}=0
$$

Note that the crests are characterized by $\tau^{*}(I, \varphi, s)=0$. The crests were introduced in [Delshams-Huguet11]. A similar construction appears in [Davletshin-Treschev16].

Crests

Definition - Crests [Delshams-Huguet11]

For each I, we call crest $\mathcal{C}(I)$ the set of surfaces in the variables (φ, s) of equation

$$
\begin{equation*}
\left\langle(\omega, 1) \cdot \nabla_{(\varphi, s)} \mathcal{L}^{*}(I, \varphi, s)\right\rangle=0, \tag{6}
\end{equation*}
$$

where $\omega_{i}=\Omega_{i} / l_{i}$.
which in our case can be rewritten as

$$
\mu_{1} \alpha\left(\omega_{1}\right) \sin \varphi_{1}+\mu_{2} \alpha\left(\omega_{2}\right) \sin \varphi_{2}+\sin s=0,
$$

where $\mu_{i}=a_{i} / a_{3}$ and

$$
\alpha\left(\omega_{i}\right)=\frac{\omega_{i}^{2} \sinh \left(\frac{\pi}{2}\right)}{\sinh \left(\frac{\pi \omega_{i}}{2}\right)} .
$$

- $\mathcal{L}^{*}(I, \theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta=\varphi-I s$ is constant on the NHIM line $R(I, \varphi, s)$

Understanding the behavior of the crests
\Downarrow
Understanding the behavior of the Reduced Poincaré function
\Downarrow
Understanding the Scattering map

- For $|\mu \alpha(I)|<1$, there are two crests $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ parameterized by:

$$
\begin{array}{rlc}
s=\xi_{M}(I, \varphi) & =-\arcsin \left(\mu_{1} \alpha\left(\omega_{1}\right) \sin \varphi_{1}+\mu_{2} \alpha\left(\omega_{2}\right) \sin \varphi_{2}\right) & \bmod 2 \pi(7) \\
\xi_{m}(I, \varphi) & =\arcsin \left(\mu_{1} \alpha\left(\omega_{1}\right) \sin \varphi_{1}+\mu_{2} \alpha\left(\omega_{2}\right) \sin \varphi_{2}\right)+\pi & \bmod 2 \pi
\end{array}
$$

They are "horizontal" crests

For $0<\left|\mu_{1}\right|+\left|\mu_{2}\right|<0.625$:

- For each I, the NHIM line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I)$ has only one intersection point.
- The scattering map S_{M} associated to the intersections between $\mathcal{C}_{M}(I)$ and $R(I, \varphi, s)$ is well defined for any $\varphi \in \mathbb{T}$. Analogously for S_{m}, changing M to m . In the variables $(I, \theta=\varphi-I s)$, both scattering maps $\mathcal{S}_{\mathrm{M}}, \mathcal{S}_{\mathrm{m}}$ are globally well defined.
For $0.625<\left|\mu_{1}\right|+\left|\mu_{2}\right|<0.97$:
- There are tangencies between $\mathcal{C}_{\mathrm{M}, \mathrm{m}}(I, \varphi)$ and $R(I, \varphi, s)$. For some value of (I, φ, s), there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{M, \mathrm{~m}}(I)$.
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)

For $\left|\mu_{1}\right|,\left|\mu_{2}\right|<0.97$:

- The crests $\mathcal{C}(I)$ are horizontal or unseparated.
- For some value of I there are NHIM lines which are tangent to the crests. Again, we have multiple scattering maps.

"Unseparated" crests

For $0.97<\left|\mu_{1}\right|$ or $0.97<\left|\mu_{2}\right|$

- The crests $\mathcal{C}(I)$ can be horizontal, vertical or unseparated
- For some value of I there are NHIM lines which are tangent to the crests.

Example of "vertical" crests

Arnold diffusion

General diffusion

Theorem (Arnold diffusion for a two-parameter family)
Consider the Hamiltonian (4)+(5). Assume $a_{1} a_{2} a_{3} \neq 0$ and $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$. Then, for every $\delta<1$ and $R>0$ there exists $\varepsilon_{0}>0$ such that for every $0<|\varepsilon|<\varepsilon_{0}$, given $\left|I_{ \pm}\right| \leq R$, there exists an orbit $\tilde{x}(t)$ and $T>0$, such that

$$
\left|I(\tilde{x}(0))-I_{-}\right| \leq \delta \quad \text { and } \quad\left|I(\tilde{x}(T))-I_{+}\right| \leq \delta
$$

Remark

Actually, we can prove that given any two actions $I_{ \pm}$and any path $\gamma(s)$ joining them in the actions space, there exists an orbit $\tilde{x}(t)$ such that $I(\tilde{x}(t))$ is δ-close to $\gamma(\Psi(t))$ for some parameterization Ψ.

Arnold diffusion

Highways

We define a Highway as an invariant set $\mathcal{H}=\{(I, \Theta(I))\}$ of the Hamiltonian given by the reduced Poincaré function $\mathcal{L}^{*}(I, \theta)$ which is contained in the level energy $\mathcal{L}^{*}(I, \theta)=A_{3}$. It is therefore a Lagrangian manifold, there exists a function $F(I)$ such that $\Theta(I)=\nabla F(I)$.
Therefore,

$$
\frac{\partial \Theta_{1}}{\partial I_{2}}=\frac{\partial \Theta_{2}}{\partial I_{1}} \text {, i.e., } \frac{\partial^{2} F}{\partial I_{2} \partial I_{1}}=\frac{\partial^{2} F}{\partial I_{1} \partial I_{2}}
$$

Proposition

Consider the Hamiltonian (4)+(5). Assume $a_{1} a_{2} a_{3} \neq 0$ and $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$. For I_{1} and I_{2} close to infinity, the function F takes the asymptotic form

$$
\begin{aligned}
F(I)=\frac{3 \pi}{2}\left(I_{1}+I_{2}\right)-\sum_{i=1,2} \frac{2 a_{i} \sinh (\pi / 2)}{\pi^{4} \Omega_{i}}\left(\pi^{3} \omega_{i}^{3}+6 \pi^{2} \omega_{i}^{2}\right. & \left.+24 \pi \omega_{i}+48\right) e^{-\pi \omega_{i} / 2} \\
& +\mathcal{O}\left(\omega_{1}^{2} \omega_{2}^{2} e^{\pi\left(\omega_{1}+\omega_{2}\right) / 2}\right)
\end{aligned}
$$

Arnold diffusion

Highways

Figure: Dynamics inside the highway. Parameter values are $a_{1}=0.3, a_{2}=0.1$, $a_{3}=1$ and $\Omega_{1}=\Omega_{2}=1$.

Highways

Proposition

Assume $a_{1} a_{2} a_{3} \neq 0$ and $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$ in Hamiltonian (4)+(5). Let $\left(I^{h}, \Theta\left(I^{h}\right)\right)$ a Highway. For $I_{2}, I_{1} \gg 1$, we have

$$
I_{2}^{h}=\frac{\Omega_{1}}{\Omega_{2}} I_{1}^{h}+\frac{2}{\pi \Omega_{2}} \log \left(\frac{\Omega_{2} a_{2}}{\Omega_{1} a_{1}}\right),
$$

and for $l_{2}, l_{1} \ll-1$,

$$
I_{2}^{h}=\frac{\Omega_{1}}{\Omega_{2}} I_{1}^{h}+\frac{2}{\pi \Omega_{2}} \log \left(\frac{\Omega_{1} a_{1}}{\Omega_{2} a_{2}}\right)
$$

Arnold diffusion

Time of diffusion

Theorem

The time of diffusion T_{d} close to a highway of Hamiltonian (4)+(5) with $\left|a_{1} / a_{3}\right|+\left|a_{2} / a_{3}\right|<0.625$ between I_{1}^{0} and I_{1}^{f} satisfies the following asymptotic expression

$$
\begin{equation*}
T_{d}=\frac{T_{s}}{\varepsilon}\left[2 \log \left(\frac{C}{\varepsilon}\right)+\mathcal{O}\left(\varepsilon^{b}\right)\right], \text { for } \varepsilon \rightarrow 0, \text { where } 0<b<1 \tag{8}
\end{equation*}
$$

with

$$
T_{s}=\frac{1}{2 \pi a_{1} \Omega_{1}} \int_{\omega_{0}}^{\omega_{f}} \frac{-\sinh \left(\pi \omega_{1} / 2\right) d \omega_{1}}{\omega_{1} \sin \left(\theta_{1}-\omega_{1} \tau^{*}\right)}
$$

where $\omega_{0}=\Omega_{1} l_{1}^{0}$ and $\omega_{f}=\Omega_{1} l_{f}$, and

$$
\begin{aligned}
C=16 & \left(\left|a_{1}\right|+\left|a_{3} \mu_{1}\right| \frac{2 \sinh (\pi / 2)\left|\mu_{1}\right|}{\pi\left[1-1.466\left(\left|\mu_{1}\right|+\left|\mu_{2}\right|\right)\right]} \max _{l_{1} \in\left[l_{1}^{0}, I_{1}^{f}\right]}\left|\omega_{1}-\alpha\left(l_{1}\right)\right|\right. \\
& \left.+\left|a_{3} \mu_{2}\right| \frac{2 \sinh (\pi / 2)\left|\mu_{1}\right|}{\pi\left[1-1.466\left(\left|\mu_{1}\right|+\left|\mu_{2}\right|\right)\right]} \max _{\left[l_{2}\left(l_{1}^{0}\right), l_{2}\left(l_{1}^{f}\right)\right]}\left|\omega_{2}-\alpha\left(l_{2}\right)\right|\right) .
\end{aligned}
$$

Grazie mille.

Thank you very much.
Moltes gràcies.
Tack så mycket.
Muchas gracias.
Muito obrigado.

- Delshams, de la LLave, Seara. A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of \mathbb{T}^{2}. Comm. Math. Phys.. 2000.
- Delshams, de la Llave, Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristic and rigorous verification on a model.Mem. Amer. Math. Soc.. 2006.
- Delshams, de la Llave, Seara. Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion.Advances in Mathematics. 2016.
- Delshams, Huguet. Geography of resonanes and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity. 2009.

A short bibliography

- Delshams, Huguet. A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems. J. Differential Equations. 2011.
- Delshams, Schaefer. Arnold Diffusion for a complete family of perturbations.Regular and Chaotics Dynamics. 2017.
- Delshams, Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics.Arxiv. 2017.
- Gidea, de la Llave, Seara. A general mechanism of diffusion in Hamiltonian systems: Qualitative results. arXiv. 2014.
- Treschev. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity . 2004.

